Mercurial > libervia-backend
view src/memory/crypto.py @ 1265:e3a9ea76de35 frontends_multi_profiles
quick_frontend, primitivus: multi-profiles refactoring part 1 (big commit, sorry :p):
This refactoring allow primitivus to manage correctly several profiles at once, with various other improvments:
- profile_manager can now plug several profiles at once, requesting password when needed. No more profile plug specific method is used anymore in backend, instead a "validated" key is used in actions
- Primitivus widget are now based on a common "PrimitivusWidget" classe which mainly manage the decoration so far
- all widgets are treated in the same way (contactList, Chat, Progress, etc), no more chat_wins specific behaviour
- widgets are created in a dedicated manager, with facilities to react on new widget creation or other events
- quick_frontend introduce a new QuickWidget class, which aims to be as generic and flexible as possible. It can manage several targets (jids or something else), and several profiles
- each widget class return a Hash according to its target. For example if given a target jid and a profile, a widget class return a hash like (target.bare, profile), the same widget will be used for all resources of the same jid
- better management of CHAT_GROUP mode for Chat widgets
- some code moved from Primitivus to QuickFrontend, the final goal is to have most non backend code in QuickFrontend, and just graphic code in subclasses
- no more (un)escapePrivate/PRIVATE_PREFIX
- contactList improved a lot: entities not in roster and special entities (private MUC conversations) are better managed
- resources can be displayed in Primitivus, and their status messages
- profiles are managed in QuickFrontend with dedicated managers
This is work in progress, other frontends are broken. Urwid SàText need to be updated. Most of features of Primitivus should work as before (or in a better way ;))
author | Goffi <goffi@goffi.org> |
---|---|
date | Wed, 10 Dec 2014 19:00:09 +0100 |
parents | 77cd312d32c4 |
children | 069ad98b360d |
line wrap: on
line source
#!/usr/bin/python # -*- coding: utf-8 -*- # SAT: a jabber client # Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Jérôme Poisson (goffi@goffi.org) # Copyright (C) 2013, 2014 Adrien Cossa (souliane@mailoo.org) # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. try: from Crypto.Cipher import AES from Crypto.Protocol.KDF import PBKDF2 except ImportError: raise Exception("PyCrypto is not installed.") from os import urandom from base64 import b64encode, b64decode from twisted.internet.threads import deferToThread from twisted.internet.defer import succeed class BlockCipher(object): BLOCK_SIZE = AES.block_size # 16 bits MAX_KEY_SIZE = AES.key_size[-1] # 32 bits = AES-256 IV_SIZE = BLOCK_SIZE # initialization vector size, 16 bits @classmethod def encrypt(cls, key, text, leave_empty=True): """Encrypt a message. Based on http://stackoverflow.com/a/12525165 @param key (unicode): the encryption key @param text (unicode): the text to encrypt @param leave_empty (bool): if True, empty text will be returned "as is" @return: Deferred: base-64 encoded str """ if leave_empty and text == '': return succeed(text) iv = BlockCipher.getRandomKey() key = key.encode('utf-8') key = key[:BlockCipher.MAX_KEY_SIZE] if len(key) >= BlockCipher.MAX_KEY_SIZE else BlockCipher.pad(key) cipher = AES.new(key, AES.MODE_CFB, iv) d = deferToThread(cipher.encrypt, BlockCipher.pad(text.encode('utf-8'))) d.addCallback(lambda ciphertext: b64encode(iv + ciphertext)) return d @classmethod def decrypt(cls, key, ciphertext, leave_empty=True): """Decrypt a message. Based on http://stackoverflow.com/a/12525165 @param key (unicode): the decryption key @param ciphertext (base-64 encoded str): the text to decrypt @param leave_empty (bool): if True, empty ciphertext will be returned "as is" @return: Deferred: str or None if the password could not be decrypted """ if leave_empty and ciphertext == '': return succeed('') ciphertext = b64decode(ciphertext) iv, ciphertext = ciphertext[:BlockCipher.IV_SIZE], ciphertext[BlockCipher.IV_SIZE:] key = key.encode('utf-8') key = key[:BlockCipher.MAX_KEY_SIZE] if len(key) >= BlockCipher.MAX_KEY_SIZE else BlockCipher.pad(key) cipher = AES.new(key, AES.MODE_CFB, iv) d = deferToThread(cipher.decrypt, ciphertext) d.addCallback(lambda text: BlockCipher.unpad(text)) # XXX: cipher.decrypt gives no way to make the distinction between # a decrypted empty value and a decryption failure... both return # the empty value. Fortunately, we detect empty passwords beforehand # thanks to the "leave_empty" parameter which is used by default. d.addCallback(lambda text: text.decode('utf-8') if text else None) return d @classmethod def getRandomKey(cls, size=None, base64=False): """Return a random key suitable for block cipher encryption. Note: a good value for the key length is to make it as long as the block size. @param size: key length in bytes, positive or null (default: BlockCipher.IV_SIZE) @param base64: if True, encode the result to base-64 @return: str (eventually base-64 encoded) """ if size is None or size < 0: size = BlockCipher.IV_SIZE key = urandom(size) return b64encode(key) if base64 else key @classmethod def pad(self, s): """Method from http://stackoverflow.com/a/12525165""" bs = BlockCipher.BLOCK_SIZE return s + (bs - len(s) % bs) * chr(bs - len(s) % bs) @classmethod def unpad(self, s): """Method from http://stackoverflow.com/a/12525165""" return s[0:-ord(s[-1])] class PasswordHasher(object): SALT_LEN = 16 # 128 bits @classmethod def hash(cls, password, salt=None, leave_empty=True): """Hash a password. @param password (str): the password to hash @param salt (base-64 encoded str): if not None, use the given salt instead of a random value @param leave_empty (bool): if True, empty password will be returned "as is" @return: Deferred: base-64 encoded str """ if leave_empty and password == '': return succeed(password) salt = b64decode(salt)[:PasswordHasher.SALT_LEN] if salt else urandom(PasswordHasher.SALT_LEN) d = deferToThread(PBKDF2, password, salt) d.addCallback(lambda hashed: b64encode(salt + hashed)) return d @classmethod def verify(cls, attempt, hashed): """Verify a password attempt. @param attempt (str): the attempt to check @param hashed (str): the hash of the password @return: Deferred: boolean """ leave_empty = hashed == '' d = PasswordHasher.hash(attempt, hashed, leave_empty) d.addCallback(lambda hashed_attempt: hashed_attempt == hashed) return d