Mercurial > sat_docs
diff scripts/minifier/otr/dep/bigint.js @ 12:1596660ddf72
Add minifier script for otr.js and its dependencies
author | souliane <souliane@mailoo.org> |
---|---|
date | Wed, 03 Sep 2014 19:38:05 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/scripts/minifier/otr/dep/bigint.js Wed Sep 03 19:38:05 2014 +0200 @@ -0,0 +1,1705 @@ +;(function (root, factory) { + + if (typeof define === 'function' && define.amd) { + define(factory.bind(root, root.crypto || root.msCrypto)) + } else if (typeof module !== 'undefined' && module.exports) { + module.exports = factory(require('crypto')) + } else { + root.BigInt = factory(root.crypto || root.msCrypto) + } + +}(this, function (crypto) { + + //////////////////////////////////////////////////////////////////////////////////////// + // Big Integer Library v. 5.5 + // Created 2000, last modified 2013 + // Leemon Baird + // www.leemon.com + // + // Version history: + // v 5.5 17 Mar 2013 + // - two lines of a form like "if (x<0) x+=n" had the "if" changed to "while" to + // handle the case when x<-n. (Thanks to James Ansell for finding that bug) + // v 5.4 3 Oct 2009 + // - added "var i" to greaterShift() so i is not global. (Thanks to Péter Szabó for finding that bug) + // + // v 5.3 21 Sep 2009 + // - added randProbPrime(k) for probable primes + // - unrolled loop in mont_ (slightly faster) + // - millerRabin now takes a bigInt parameter rather than an int + // + // v 5.2 15 Sep 2009 + // - fixed capitalization in call to int2bigInt in randBigInt + // (thanks to Emili Evripidou, Reinhold Behringer, and Samuel Macaleese for finding that bug) + // + // v 5.1 8 Oct 2007 + // - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters + // - added functions GCD and randBigInt, which call GCD_ and randBigInt_ + // - fixed a bug found by Rob Visser (see comment with his name below) + // - improved comments + // + // This file is public domain. You can use it for any purpose without restriction. + // I do not guarantee that it is correct, so use it at your own risk. If you use + // it for something interesting, I'd appreciate hearing about it. If you find + // any bugs or make any improvements, I'd appreciate hearing about those too. + // It would also be nice if my name and URL were left in the comments. But none + // of that is required. + // + // This code defines a bigInt library for arbitrary-precision integers. + // A bigInt is an array of integers storing the value in chunks of bpe bits, + // little endian (buff[0] is the least significant word). + // Negative bigInts are stored two's complement. Almost all the functions treat + // bigInts as nonnegative. The few that view them as two's complement say so + // in their comments. Some functions assume their parameters have at least one + // leading zero element. Functions with an underscore at the end of the name put + // their answer into one of the arrays passed in, and have unpredictable behavior + // in case of overflow, so the caller must make sure the arrays are big enough to + // hold the answer. But the average user should never have to call any of the + // underscored functions. Each important underscored function has a wrapper function + // of the same name without the underscore that takes care of the details for you. + // For each underscored function where a parameter is modified, that same variable + // must not be used as another argument too. So, you cannot square x by doing + // multMod_(x,x,n). You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). + // Or simply use the multMod(x,x,n) function without the underscore, where + // such issues never arise, because non-underscored functions never change + // their parameters; they always allocate new memory for the answer that is returned. + // + // These functions are designed to avoid frequent dynamic memory allocation in the inner loop. + // For most functions, if it needs a BigInt as a local variable it will actually use + // a global, and will only allocate to it only when it's not the right size. This ensures + // that when a function is called repeatedly with same-sized parameters, it only allocates + // memory on the first call. + // + // Note that for cryptographic purposes, the calls to Math.random() must + // be replaced with calls to a better pseudorandom number generator. + // + // In the following, "bigInt" means a bigInt with at least one leading zero element, + // and "integer" means a nonnegative integer less than radix. In some cases, integer + // can be negative. Negative bigInts are 2s complement. + // + // The following functions do not modify their inputs. + // Those returning a bigInt, string, or Array will dynamically allocate memory for that value. + // Those returning a boolean will return the integer 0 (false) or 1 (true). + // Those returning boolean or int will not allocate memory except possibly on the first + // time they're called with a given parameter size. + // + // bigInt add(x,y) //return (x+y) for bigInts x and y. + // bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. + // string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95 + // int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros + // bigInt dup(x) //return a copy of bigInt x + // boolean equals(x,y) //is the bigInt x equal to the bigint y? + // boolean equalsInt(x,y) //is bigint x equal to integer y? + // bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed + // Array findPrimes(n) //return array of all primes less than integer n + // bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements). + // boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts) + // boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? + // bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements + // bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null + // int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse + // boolean isZero(x) //is the bigInt x equal to zero? + // boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1<b<x) + // boolean millerRabinInt(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is int, 1<b<x) + // bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. + // int modInt(x,n) //return x mod n for bigInt x and integer n. + // bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y<x. + // bigInt multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. + // boolean negative(x) //is bigInt x negative? + // bigInt powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. + // bigInt randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. + // bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm. + // bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80). + // bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements + // bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement + // bigInt trim(x,k) //return a copy of x with exactly k leading zero elements + // + // + // The following functions each have a non-underscored version, which most users should call instead. + // These functions each write to a single parameter, and the caller is responsible for ensuring the array + // passed in is large enough to hold the result. + // + // void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer + // void add_(x,y) //do x=x+y for bigInts x and y + // void copy_(x,y) //do x=y on bigInts x and y + // void copyInt_(x,n) //do x=n on bigInt x and integer n + // void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array). + // boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist + // void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array). + // void mult_(x,y) //do x=x*y for bigInts x and y. + // void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n. + // void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1. + // void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1. + // void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. + // void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. + // + // The following functions do NOT have a non-underscored version. + // They each write a bigInt result to one or more parameters. The caller is responsible for + // ensuring the arrays passed in are large enough to hold the results. + // + // void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe)) + // void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits. + // void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r + // int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array). + // int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y + // void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array). + // void leftShift_(x,n) //left shift bigInt x by n bits. n<bpe. + // void linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b + // void linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys + // void mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined) + // void multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer. + // void rightShift_(x,n) //right shift bigInt x by n bits. (This never overflows its array). + // void squareMod_(x,n) //do x=x*x mod n for bigInts x,n + // void subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. + // + // The following functions are based on algorithms from the _Handbook of Applied Cryptography_ + // powMod_() = algorithm 14.94, Montgomery exponentiation + // eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ + // GCD_() = algorothm 14.57, Lehmer's algorithm + // mont_() = algorithm 14.36, Montgomery multiplication + // divide_() = algorithm 14.20 Multiple-precision division + // squareMod_() = algorithm 14.16 Multiple-precision squaring + // randTruePrime_() = algorithm 4.62, Maurer's algorithm + // millerRabin() = algorithm 4.24, Miller-Rabin algorithm + // + // Profiling shows: + // randTruePrime_() spends: + // 10% of its time in calls to powMod_() + // 85% of its time in calls to millerRabin() + // millerRabin() spends: + // 99% of its time in calls to powMod_() (always with a base of 2) + // powMod_() spends: + // 94% of its time in calls to mont_() (almost always with x==y) + // + // This suggests there are several ways to speed up this library slightly: + // - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) + // -- this should especially focus on being fast when raising 2 to a power mod n + // - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test + // - tune the parameters in randTruePrime_(), including c, m, and recLimit + // - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking + // within the loop when all the parameters are the same length. + // + // There are several ideas that look like they wouldn't help much at all: + // - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) + // - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) + // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square + // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that + // method would be slower. This is unfortunate because the code currently spends almost all of its time + // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring + // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded + // sentences that seem to imply it's faster to do a non-modular square followed by a single + // Montgomery reduction, but that's obviously wrong. + //////////////////////////////////////////////////////////////////////////////////////// + + //globals + + // The number of significant bits in the fraction of a JavaScript + // floating-point number is 52, independent of platform. + // See: https://github.com/arlolra/otr/issues/41 + + var bpe = 26; // bits stored per array element + var radix = 1 << bpe; // equals 2^bpe + var mask = radix - 1; // AND this with an array element to chop it down to bpe bits + + //the digits for converting to different bases + var digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-'; + + var one=int2bigInt(1,1,1); //constant used in powMod_() + + //the following global variables are scratchpad memory to + //reduce dynamic memory allocation in the inner loop + var t=new Array(0); + var ss=t; //used in mult_() + var s0=t; //used in multMod_(), squareMod_() + var s1=t; //used in powMod_(), multMod_(), squareMod_() + var s2=t; //used in powMod_(), multMod_() + var s3=t; //used in powMod_() + var s4=t, s5=t; //used in mod_() + var s6=t; //used in bigInt2str() + var s7=t; //used in powMod_() + var T=t; //used in GCD_() + var sa=t; //used in mont_() + var mr_x1=t, mr_r=t, mr_a=t; //used in millerRabin() + var eg_v=t, eg_u=t, eg_A=t, eg_B=t, eg_C=t, eg_D=t; //used in eGCD_(), inverseMod_() + var md_q1=t, md_q2=t, md_q3=t, md_r=t, md_r1=t, md_r2=t, md_tt=t; //used in mod_() + + var primes=t, pows=t, s_i=t, s_i2=t, s_R=t, s_rm=t, s_q=t, s_n1=t; + var s_a=t, s_r2=t, s_n=t, s_b=t, s_d=t, s_x1=t, s_x2=t, s_aa=t; //used in randTruePrime_() + + var rpprb=t; //used in randProbPrimeRounds() (which also uses "primes") + + //////////////////////////////////////////////////////////////////////////////////////// + + + //return array of all primes less than integer n + function findPrimes(n) { + var i,s,p,ans; + s=new Array(n); + for (i=0;i<n;i++) + s[i]=0; + s[0]=2; + p=0; //first p elements of s are primes, the rest are a sieve + for(;s[p]<n;) { //s[p] is the pth prime + for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p] + s[i]=1; + p++; + s[p]=s[p-1]+1; + for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0) + } + ans=new Array(p); + for(i=0;i<p;i++) + ans[i]=s[i]; + return ans; + } + + + //does a single round of Miller-Rabin base b consider x to be a possible prime? + //x is a bigInt, and b is an integer, with b<x + function millerRabinInt(x,b) { + if (mr_x1.length!=x.length) { + mr_x1=dup(x); + mr_r=dup(x); + mr_a=dup(x); + } + + copyInt_(mr_a,b); + return millerRabin(x,mr_a); + } + + //does a single round of Miller-Rabin base b consider x to be a possible prime? + //x and b are bigInts with b<x + function millerRabin(x,b) { + var i,j,k,s; + + if (mr_x1.length!=x.length) { + mr_x1=dup(x); + mr_r=dup(x); + mr_a=dup(x); + } + + copy_(mr_a,b); + copy_(mr_r,x); + copy_(mr_x1,x); + + addInt_(mr_r,-1); + addInt_(mr_x1,-1); + + //s=the highest power of two that divides mr_r + + /* + k=0; + for (i=0;i<mr_r.length;i++) + for (j=1;j<mask;j<<=1) + if (x[i] & j) { + s=(k<mr_r.length+bpe ? k : 0); + i=mr_r.length; + j=mask; + } else + k++; + */ + + /* http://www.javascripter.net/math/primes/millerrabinbug-bigint54.htm */ + if (isZero(mr_r)) return 0; + for (k=0; mr_r[k]==0; k++); + for (i=1,j=2; mr_r[k]%j==0; j*=2,i++ ); + s = k*bpe + i - 1; + /* end */ + + if (s) + rightShift_(mr_r,s); + + powMod_(mr_a,mr_r,x); + + if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) { + j=1; + while (j<=s-1 && !equals(mr_a,mr_x1)) { + squareMod_(mr_a,x); + if (equalsInt(mr_a,1)) { + return 0; + } + j++; + } + if (!equals(mr_a,mr_x1)) { + return 0; + } + } + return 1; + } + + //returns how many bits long the bigInt is, not counting leading zeros. + function bitSize(x) { + var j,z,w; + for (j=x.length-1; (x[j]==0) && (j>0); j--); + for (z=0,w=x[j]; w; (w>>=1),z++); + z+=bpe*j; + return z; + } + + //return a copy of x with at least n elements, adding leading zeros if needed + function expand(x,n) { + var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); + copy_(ans,x); + return ans; + } + + //return a k-bit true random prime using Maurer's algorithm. + function randTruePrime(k) { + var ans=int2bigInt(0,k,0); + randTruePrime_(ans,k); + return trim(ans,1); + } + + //return a k-bit random probable prime with probability of error < 2^-80 + function randProbPrime(k) { + if (k>=600) return randProbPrimeRounds(k,2); //numbers from HAC table 4.3 + if (k>=550) return randProbPrimeRounds(k,4); + if (k>=500) return randProbPrimeRounds(k,5); + if (k>=400) return randProbPrimeRounds(k,6); + if (k>=350) return randProbPrimeRounds(k,7); + if (k>=300) return randProbPrimeRounds(k,9); + if (k>=250) return randProbPrimeRounds(k,12); //numbers from HAC table 4.4 + if (k>=200) return randProbPrimeRounds(k,15); + if (k>=150) return randProbPrimeRounds(k,18); + if (k>=100) return randProbPrimeRounds(k,27); + return randProbPrimeRounds(k,40); //number from HAC remark 4.26 (only an estimate) + } + + //return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes) + function randProbPrimeRounds(k,n) { + var ans, i, divisible, B; + B=30000; //B is largest prime to use in trial division + ans=int2bigInt(0,k,0); + + //optimization: try larger and smaller B to find the best limit. + + if (primes.length==0) + primes=findPrimes(30000); //check for divisibility by primes <=30000 + + if (rpprb.length!=ans.length) + rpprb=dup(ans); + + for (;;) { //keep trying random values for ans until one appears to be prime + //optimization: pick a random number times L=2*3*5*...*p, plus a + // random element of the list of all numbers in [0,L) not divisible by any prime up to p. + // This can reduce the amount of random number generation. + + randBigInt_(ans,k,0); //ans = a random odd number to check + ans[0] |= 1; + divisible=0; + + //check ans for divisibility by small primes up to B + for (i=0; (i<primes.length) && (primes[i]<=B); i++) + if (modInt(ans,primes[i])==0 && !equalsInt(ans,primes[i])) { + divisible=1; + break; + } + + //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here. + + //do n rounds of Miller Rabin, with random bases less than ans + for (i=0; i<n && !divisible; i++) { + randBigInt_(rpprb,k,0); + while(!greater(ans,rpprb)) //pick a random rpprb that's < ans + randBigInt_(rpprb,k,0); + if (!millerRabin(ans,rpprb)) + divisible=1; + } + + if(!divisible) + return ans; + } + } + + //return a new bigInt equal to (x mod n) for bigInts x and n. + function mod(x,n) { + var ans=dup(x); + mod_(ans,n); + return trim(ans,1); + } + + //return (x+n) where x is a bigInt and n is an integer. + function addInt(x,n) { + var ans=expand(x,x.length+1); + addInt_(ans,n); + return trim(ans,1); + } + + //return x*y for bigInts x and y. This is faster when y<x. + function mult(x,y) { + var ans=expand(x,x.length+y.length); + mult_(ans,y); + return trim(ans,1); + } + + //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n. + function powMod(x,y,n) { + var ans=expand(x,n.length); + powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't + return trim(ans,1); + } + + //return (x-y) for bigInts x and y. Negative answers will be 2s complement + function sub(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + sub_(ans,y); + return trim(ans,1); + } + + //return (x+y) for bigInts x and y. + function add(x,y) { + var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); + add_(ans,y); + return trim(ans,1); + } + + //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null + function inverseMod(x,n) { + var ans=expand(x,n.length); + var s; + s=inverseMod_(ans,n); + return s ? trim(ans,1) : null; + } + + //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x. + function multMod(x,y,n) { + var ans=expand(x,n.length); + multMod_(ans,y,n); + return trim(ans,1); + } + + //generate a k-bit true random prime using Maurer's algorithm, + //and put it into ans. The bigInt ans must be large enough to hold it. + function randTruePrime_(ans,k) { + var c,w,m,pm,dd,j,r,B,divisible,z,zz,recSize,recLimit; + + if (primes.length==0) + primes=findPrimes(30000); //check for divisibility by primes <=30000 + + if (pows.length==0) { + pows=new Array(512); + for (j=0;j<512;j++) { + pows[j]=Math.pow(2,j/511.0-1.0); + } + } + + //c and m should be tuned for a particular machine and value of k, to maximize speed + c=0.1; //c=0.1 in HAC + m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + recLimit=20; //stop recursion when k <=recLimit. Must have recLimit >= 2 + + if (s_i2.length!=ans.length) { + s_i2=dup(ans); + s_R =dup(ans); + s_n1=dup(ans); + s_r2=dup(ans); + s_d =dup(ans); + s_x1=dup(ans); + s_x2=dup(ans); + s_b =dup(ans); + s_n =dup(ans); + s_i =dup(ans); + s_rm=dup(ans); + s_q =dup(ans); + s_a =dup(ans); + s_aa=dup(ans); + } + + if (k <= recLimit) { //generate small random primes by trial division up to its square root + pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k) + copyInt_(ans,0); + for (dd=1;dd;) { + dd=0; + ans[0]= 1 | (1<<(k-1)) | randomBitInt(k); //random, k-bit, odd integer, with msb 1 + for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k) + if (0==(ans[0]%primes[j])) { + dd=1; + break; + } + } + } + carry_(ans); + return; + } + + B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B). + if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits + for (r=1; k-k*r<=m; ) + r=pows[randomBitInt(9)]; //r=Math.pow(2,Math.random()-1); + else + r=0.5; + + //simulation suggests the more complex algorithm using r=.333 is only slightly faster. + + recSize=Math.floor(r*k)+1; + + randTruePrime_(s_q,recSize); + copyInt_(s_i2,0); + s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) + divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) + + z=bitSize(s_i); + + for (;;) { + for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] + randBigInt_(s_R,z,0); + if (greater(s_i,s_R)) + break; + } //now s_R is in the range [0,s_i-1] + addInt_(s_R,1); //now s_R is in the range [1,s_i] + add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] + + copy_(s_n,s_q); + mult_(s_n,s_R); + multInt_(s_n,2); + addInt_(s_n,1); //s_n=2*s_R*s_q+1 + + copy_(s_r2,s_R); + multInt_(s_r2,2); //s_r2=2*s_R + + //check s_n for divisibility by small primes up to B + for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++) + if (modInt(s_n,primes[j])==0 && !equalsInt(s_n,primes[j])) { + divisible=1; + break; + } + + if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2 + if (!millerRabinInt(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_ + divisible=1; + + if (!divisible) { //if it passes that test, continue checking s_n + addInt_(s_n,-3); + for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros + for (zz=0,w=s_n[j]; w; (w>>=1),zz++); + zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros + for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] + randBigInt_(s_a,zz,0); + if (greater(s_n,s_a)) + break; + } //now s_a is in the range [0,s_n-1] + addInt_(s_n,3); //now s_a is in the range [0,s_n-4] + addInt_(s_a,2); //now s_a is in the range [2,s_n-2] + copy_(s_b,s_a); + copy_(s_n1,s_n); + addInt_(s_n1,-1); + powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n + addInt_(s_b,-1); + if (isZero(s_b)) { + copy_(s_b,s_a); + powMod_(s_b,s_r2,s_n); + addInt_(s_b,-1); + copy_(s_aa,s_n); + copy_(s_d,s_b); + GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime + if (equalsInt(s_d,1)) { + copy_(ans,s_aa); + return; //if we've made it this far, then s_n is absolutely guaranteed to be prime + } + } + } + } + } + + //Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1. + function randBigInt(n,s) { + var a,b; + a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element + b=int2bigInt(0,0,a); + randBigInt_(b,n,s); + return b; + } + + //Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1. + //Array b must be big enough to hold the result. Must have n>=1 + function randBigInt_(b,n,s) { + var i,a; + for (i=0;i<b.length;i++) + b[i]=0; + a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt + for (i=0;i<a;i++) { + b[i]=randomBitInt(bpe); + } + b[a-1] &= (2<<((n-1)%bpe))-1; + if (s==1) + b[a-1] |= (1<<((n-1)%bpe)); + } + + //Return the greatest common divisor of bigInts x and y (each with same number of elements). + function GCD(x,y) { + var xc,yc; + xc=dup(x); + yc=dup(y); + GCD_(xc,yc); + return xc; + } + + //set x to the greatest common divisor of bigInts x and y (each with same number of elements). + //y is destroyed. + function GCD_(x,y) { + var i,xp,yp,A,B,C,D,q,sing,qp; + if (T.length!=x.length) + T=dup(x); + + sing=1; + while (sing) { //while y has nonzero elements other than y[0] + sing=0; + for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0 + if (y[i]) { + sing=1; + break; + } + if (!sing) break; //quit when y all zero elements except possibly y[0] + + for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x + xp=x[i]; + yp=y[i]; + A=1; B=0; C=0; D=1; + while ((yp+C) && (yp+D)) { + q =Math.floor((xp+A)/(yp+C)); + qp=Math.floor((xp+B)/(yp+D)); + if (q!=qp) + break; + t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) + t= B-q*D; B=D; D=t; + t=xp-q*yp; xp=yp; yp=t; + } + if (B) { + copy_(T,x); + linComb_(x,y,A,B); //x=A*x+B*y + linComb_(y,T,D,C); //y=D*y+C*T + } else { + mod_(x,y); + copy_(T,x); + copy_(x,y); + copy_(y,T); + } + } + if (y[0]==0) + return; + t=modInt(x,y[0]); + copyInt_(x,y[0]); + y[0]=t; + while (y[0]) { + x[0]%=y[0]; + t=x[0]; x[0]=y[0]; y[0]=t; + } + } + + //do x=x**(-1) mod n, for bigInts x and n. + //If no inverse exists, it sets x to zero and returns 0, else it returns 1. + //The x array must be at least as large as the n array. + function inverseMod_(x,n) { + var k=1+2*Math.max(x.length,n.length); + + if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist + copyInt_(x,0); + return 0; + } + + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_v=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + + copy_(eg_u,x); + copy_(eg_v,n); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while eg_u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,n); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(eg_v[0]&1)) { //while eg_v is even + halve_(eg_v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,n); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(eg_v,eg_u)) { //eg_v <= eg_u + sub_(eg_u,eg_v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //eg_v > eg_u + sub_(eg_v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + + if (equalsInt(eg_u,0)) { + while (negative(eg_C)) //make sure answer is nonnegative + add_(eg_C,n); + copy_(x,eg_C); + + if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse + copyInt_(x,0); + return 0; + } + return 1; + } + } + } + + //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse + function inverseModInt(x,n) { + var a=1,b=0,t; + for (;;) { + if (x==1) return a; + if (x==0) return 0; + b-=a*Math.floor(n/x); + n%=x; + + if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += + if (n==0) return 0; + a-=b*Math.floor(x/n); + x%=n; + } + } + + //this deprecated function is for backward compatibility only. + function inverseModInt_(x,n) { + return inverseModInt(x,n); + } + + + //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: + // v = GCD_(x,y) = a*x-b*y + //The bigInts v, a, b, must have exactly as many elements as the larger of x and y. + function eGCD_(x,y,v,a,b) { + var g=0; + var k=Math.max(x.length,y.length); + if (eg_u.length!=k) { + eg_u=new Array(k); + eg_A=new Array(k); + eg_B=new Array(k); + eg_C=new Array(k); + eg_D=new Array(k); + } + while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even + halve_(x); + halve_(y); + g++; + } + copy_(eg_u,x); + copy_(v,y); + copyInt_(eg_A,1); + copyInt_(eg_B,0); + copyInt_(eg_C,0); + copyInt_(eg_D,1); + for (;;) { + while(!(eg_u[0]&1)) { //while u is even + halve_(eg_u); + if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 + halve_(eg_A); + halve_(eg_B); + } else { + add_(eg_A,y); halve_(eg_A); + sub_(eg_B,x); halve_(eg_B); + } + } + + while (!(v[0]&1)) { //while v is even + halve_(v); + if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 + halve_(eg_C); + halve_(eg_D); + } else { + add_(eg_C,y); halve_(eg_C); + sub_(eg_D,x); halve_(eg_D); + } + } + + if (!greater(v,eg_u)) { //v<=u + sub_(eg_u,v); + sub_(eg_A,eg_C); + sub_(eg_B,eg_D); + } else { //v>u + sub_(v,eg_u); + sub_(eg_C,eg_A); + sub_(eg_D,eg_B); + } + if (equalsInt(eg_u,0)) { + while (negative(eg_C)) { //make sure a (C) is nonnegative + add_(eg_C,y); + sub_(eg_D,x); + } + multInt_(eg_D,-1); ///make sure b (D) is nonnegative + copy_(a,eg_C); + copy_(b,eg_D); + leftShift_(v,g); + return; + } + } + } + + + //is bigInt x negative? + function negative(x) { + return ((x[x.length-1]>>(bpe-1))&1); + } + + + //is (x << (shift*bpe)) > y? + //x and y are nonnegative bigInts + //shift is a nonnegative integer + function greaterShift(x,y,shift) { + var i, kx=x.length, ky=y.length; + var k=((kx+shift)<ky) ? (kx+shift) : ky; + for (i=ky-1-shift; i<kx && i>=0; i++) + if (x[i]>0) + return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger + for (i=kx-1+shift; i<ky; i++) + if (y[i]>0) + return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger + for (i=k-1; i>=shift; i--) + if (x[i-shift]>y[i]) return 1; + else if (x[i-shift]<y[i]) return 0; + return 0; + } + + //is x > y? (x and y both nonnegative) + function greater(x,y) { + var i; + var k=(x.length<y.length) ? x.length : y.length; + + for (i=x.length;i<y.length;i++) + if (y[i]) + return 0; //y has more digits + + for (i=y.length;i<x.length;i++) + if (x[i]) + return 1; //x has more digits + + for (i=k-1;i>=0;i--) + if (x[i]>y[i]) + return 1; + else if (x[i]<y[i]) + return 0; + return 0; + } + + //divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints. + //x must have at least one leading zero element. + //y must be nonzero. + //q and r must be arrays that are exactly the same length as x. (Or q can have more). + //Must have x.length >= y.length >= 2. + function divide_(x,y,q,r) { + var kx, ky; + var i,j,y1,y2,c,a,b; + copy_(r,x); + for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros + + //normalize: ensure the most significant element of y has its highest bit set + b=y[ky-1]; + for (a=0; b; a++) + b>>=1; + a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element + leftShift_(y,a); //multiply both by 1<<a now, then divide both by that at the end + leftShift_(r,a); + + //Rob Visser discovered a bug: the following line was originally just before the normalization. + for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros + + copyInt_(q,0); // q=0 + while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) { + subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky) + q[kx-ky]++; // q[kx-ky]++; + } // } + + for (i=kx-1; i>=ky; i--) { + if (r[i]==y[ky-1]) + q[i-ky]=mask; + else + q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); + + //The following for(;;) loop is equivalent to the commented while loop, + //except that the uncommented version avoids overflow. + //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 + // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) + // q[i-ky]--; + for (;;) { + y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; + c=y2; + y2=y2 & mask; + c = (c - y2) / radix; + y1=c+q[i-ky]*y[ky-1]; + c=y1; + y1=y1 & mask; + c = (c - y1) / radix; + + if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) + q[i-ky]--; + else + break; + } + + linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) + if (negative(r)) { + addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) + q[i-ky]--; + } + } + + rightShift_(y,a); //undo the normalization step + rightShift_(r,a); //undo the normalization step + } + + //do carries and borrows so each element of the bigInt x fits in bpe bits. + function carry_(x) { + var i,k,c,b; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b = c & mask; + b = -((c - b) / radix); + c+=b*radix; + } + x[i]=c & mask; + c = ((c - x[i]) / radix) - b; + } + } + + //return x mod n for bigInt x and integer n. + function modInt(x,n) { + var i,c=0; + for (i=x.length-1; i>=0; i--) + c=(c*radix+x[i])%n; + return c; + } + + //convert the integer t into a bigInt with at least the given number of bits. + //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) + //Pad the array with leading zeros so that it has at least minSize elements. + //There will always be at least one leading 0 element. + function int2bigInt(t,bits,minSize) { + var i,k, buff; + k=Math.ceil(bits/bpe)+1; + k=minSize>k ? minSize : k; + buff=new Array(k); + copyInt_(buff,t); + return buff; + } + + //return the bigInt given a string representation in a given base. + //Pad the array with leading zeros so that it has at least minSize elements. + //If base=-1, then it reads in a space-separated list of array elements in decimal. + //The array will always have at least one leading zero, unless base=-1. + function str2bigInt(s,base,minSize) { + var d, i, j, x, y, kk; + var k=s.length; + if (base==-1) { //comma-separated list of array elements in decimal + x=new Array(0); + for (;;) { + y=new Array(x.length+1); + for (i=0;i<x.length;i++) + y[i+1]=x[i]; + y[0]=parseInt(s,10); + x=y; + d=s.indexOf(',',0); + if (d<1) + break; + s=s.substring(d+1); + if (s.length==0) + break; + } + if (x.length<minSize) { + y=new Array(minSize); + copy_(y,x); + return y; + } + return x; + } + + // log2(base)*k + var bb = base, p = 0; + var b = base == 1 ? k : 0; + while (bb > 1) { + if (bb & 1) p = 1; + b += k; + bb >>= 1; + } + b += p*k; + + x=int2bigInt(0,b,0); + for (i=0;i<k;i++) { + d=digitsStr.indexOf(s.substring(i,i+1),0); + if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36 + d-=26; + if (d>=base || d<0) { //stop at first illegal character + break; + } + multInt_(x,base); + addInt_(x,d); + } + + for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros + k=minSize>k+1 ? minSize : k+1; + y=new Array(k); + kk=k<x.length ? k : x.length; + for (i=0;i<kk;i++) + y[i]=x[i]; + for (;i<k;i++) + y[i]=0; + return y; + } + + //is bigint x equal to integer y? + //y must have less than bpe bits + function equalsInt(x,y) { + var i; + if (x[0]!=y) + return 0; + for (i=1;i<x.length;i++) + if (x[i]) + return 0; + return 1; + } + + //are bigints x and y equal? + //this works even if x and y are different lengths and have arbitrarily many leading zeros + function equals(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + if (x[i]!=y[i]) + return 0; + if (x.length>y.length) { + for (;i<x.length;i++) + if (x[i]) + return 0; + } else { + for (;i<y.length;i++) + if (y[i]) + return 0; + } + return 1; + } + + //is the bigInt x equal to zero? + function isZero(x) { + var i; + for (i=0;i<x.length;i++) + if (x[i]) + return 0; + return 1; + } + + //convert a bigInt into a string in a given base, from base 2 up to base 95. + //Base -1 prints the contents of the array representing the number. + function bigInt2str(x,base) { + var i,t,s=""; + + if (s6.length!=x.length) + s6=dup(x); + else + copy_(s6,x); + + if (base==-1) { //return the list of array contents + for (i=x.length-1;i>0;i--) + s+=x[i]+','; + s+=x[0]; + } + else { //return it in the given base + while (!isZero(s6)) { + t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); + s=digitsStr.substring(t,t+1)+s; + } + } + if (s.length==0) + s="0"; + return s; + } + + //returns a duplicate of bigInt x + function dup(x) { + var i, buff; + buff=new Array(x.length); + copy_(buff,x); + return buff; + } + + //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). + function copy_(x,y) { + var i; + var k=x.length<y.length ? x.length : y.length; + for (i=0;i<k;i++) + x[i]=y[i]; + for (i=k;i<x.length;i++) + x[i]=0; + } + + //do x=y on bigInt x and integer y. + function copyInt_(x,n) { + var i,c; + for (c=n,i=0;i<x.length;i++) { + x[i]=c & mask; + c>>=bpe; + } + } + + //do x=x+n where x is a bigInt and n is an integer. + //x must be large enough to hold the result. + function addInt_(x,n) { + var i,k,c,b; + x[0]+=n; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]; + b=0; + if (c<0) { + b = c & mask; + b = -((c - b) / radix); + c+=b*radix; + } + x[i]=c & mask; + c = ((c - x[i]) / radix) - b; + if (!c) return; //stop carrying as soon as the carry is zero + } + } + + //right shift bigInt x by n bits. + function rightShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=0;i<x.length-k;i++) //right shift x by k elements + x[i]=x[i+k]; + for (;i<x.length;i++) + x[i]=0; + n%=bpe; + } + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n)); + } + x[i]>>=n; + } + + //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement + function halve_(x) { + var i; + for (i=0;i<x.length-1;i++) { + x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1)); + } + x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same + } + + //left shift bigInt x by n bits. + function leftShift_(x,n) { + var i; + var k=Math.floor(n/bpe); + if (k) { + for (i=x.length; i>=k; i--) //left shift x by k elements + x[i]=x[i-k]; + for (;i>=0;i--) + x[i]=0; + n%=bpe; + } + if (!n) + return; + for (i=x.length-1;i>0;i--) { + x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n))); + } + x[i]=mask & (x[i]<<n); + } + + //do x=x*n where x is a bigInt and n is an integer. + //x must be large enough to hold the result. + function multInt_(x,n) { + var i,k,c,b; + if (!n) + return; + k=x.length; + c=0; + for (i=0;i<k;i++) { + c+=x[i]*n; + b=0; + if (c<0) { + b = c & mask; + b = -((c - b) / radix); + c+=b*radix; + } + x[i]=c & mask; + c = ((c - x[i]) / radix) - b; + } + } + + //do x=floor(x/n) for bigInt x and integer n, and return the remainder + function divInt_(x,n) { + var i,r=0,s; + for (i=x.length-1;i>=0;i--) { + s=r*radix+x[i]; + x[i]=Math.floor(s/n); + r=s%n; + } + return r; + } + + //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. + //x must be large enough to hold the answer. + function linComb_(x,y,a,b) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + kk=x.length; + for (c=0,i=0;i<k;i++) { + c+=a*x[i]+b*y[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;i<kk;i++) { + c+=a*x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. + //x must be large enough to hold the answer. + function linCombShift_(x,y,b,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+b*y[i-ys]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. + //x must be large enough to hold the answer. + function addShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]+y[i-ys]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. + //x must be large enough to hold the answer. + function subShift_(x,y,ys) { + var i,c,k,kk; + k=x.length<ys+y.length ? x.length : ys+y.length; + kk=x.length; + for (c=0,i=ys;i<k;i++) { + c+=x[i]-y[i-ys]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;c && i<kk;i++) { + c+=x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do x=x-y for bigInts x and y. + //x must be large enough to hold the answer. + //negative answers will be 2s complement + function sub_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]-y[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do x=x+y for bigInts x and y. + //x must be large enough to hold the answer. + function add_(x,y) { + var i,c,k,kk; + k=x.length<y.length ? x.length : y.length; + for (c=0,i=0;i<k;i++) { + c+=x[i]+y[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + for (i=k;c && i<x.length;i++) { + c+=x[i]; + x[i]=c & mask; + c = (c - x[i]) / radix; + } + } + + //do x=x*y for bigInts x and y. This is faster when y<x. + function mult_(x,y) { + var i; + if (ss.length!=2*x.length) + ss=new Array(2*x.length); + copyInt_(ss,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe)) + copy_(x,ss); + } + + //do x=x mod n for bigInts x and n. + function mod_(x,n) { + if (s4.length!=x.length) + s4=dup(x); + else + copy_(s4,x); + if (s5.length!=x.length) + s5=dup(x); + divide_(s4,n,s5,x); //x = remainder of s4 / n + } + + //do x=x*y mod n for bigInts x,y,n. + //for greater speed, let y<x. + function multMod_(x,y,n) { + var i; + if (s0.length!=2*x.length) + s0=new Array(2*x.length); + copyInt_(s0,0); + for (i=0;i<y.length;i++) + if (y[i]) + linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe)) + mod_(s0,n); + copy_(x,s0); + } + + //do x=x*x mod n for bigInts x,n. + function squareMod_(x,n) { + var i,j,d,c,kx,kn,k; + for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x + k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n + if (s0.length!=k) + s0=new Array(k); + copyInt_(s0,0); + for (i=0;i<kx;i++) { + c=s0[2*i]+x[i]*x[i]; + s0[2*i]=c & mask; + c = (c - s0[2*i]) / radix; + for (j=i+1;j<kx;j++) { + c=s0[i+j]+2*x[i]*x[j]+c; + s0[i+j]=(c & mask); + c = (c - s0[i+j]) / radix; + } + s0[i+kx]=c; + } + mod_(s0,n); + copy_(x,s0); + } + + //return x with exactly k leading zero elements + function trim(x,k) { + var i,y; + for (i=x.length; i>0 && !x[i-1]; i--); + y=new Array(i+k); + copy_(y,x); + return y; + } + + //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. + //this is faster when n is odd. x usually needs to have as many elements as n. + function powMod_(x,y,n) { + var k1,k2,kn,np; + if(s7.length!=n.length) + s7=dup(n); + + //for even modulus, use a simple square-and-multiply algorithm, + //rather than using the more complex Montgomery algorithm. + if ((n[0]&1)==0) { + copy_(s7,x); + copyInt_(x,1); + while(!equalsInt(y,0)) { + if (y[0]&1) + multMod_(x,s7,n); + divInt_(y,2); + squareMod_(s7,n); + } + return; + } + + //calculate np from n for the Montgomery multiplications + copyInt_(s7,0); + for (kn=n.length;kn>0 && !n[kn-1];kn--); + np=radix-inverseModInt(modInt(n,radix),radix); + s7[kn]=1; + multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n + + if (s3.length!=x.length) + s3=dup(x); + else + copy_(s3,x); + + for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y + if (y[k1]==0) { //anything to the 0th power is 1 + copyInt_(x,1); + return; + } + for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] + for (;;) { + if (!(k2>>=1)) { //look at next bit of y + k1--; + if (k1<0) { + mont_(x,one,n,np); + return; + } + k2=1<<(bpe-1); + } + mont_(x,x,n,np); + + if (k2 & y[k1]) //if next bit is a 1 + mont_(x,s3,n,np); + } + } + + + //do x=x*y*Ri mod n for bigInts x,y,n, + // where Ri = 2**(-kn*bpe) mod n, and kn is the + // number of elements in the n array, not + // counting leading zeros. + //x array must have at least as many elemnts as the n array + //It's OK if x and y are the same variable. + //must have: + // x,y < n + // n is odd + // np = -(n^(-1)) mod radix + function mont_(x,y,n,np) { + var i,j,c,ui,t,t2,ks; + var kn=n.length; + var ky=y.length; + + if (sa.length!=kn) + sa=new Array(kn); + + copyInt_(sa,0); + + for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n + for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y + ks=sa.length-1; //sa will never have more than this many nonzero elements. + + //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers + for (i=0; i<kn; i++) { + t=sa[0]+x[i]*y[0]; + ui=((t & mask) * np) & mask; //the inner "& mask" was needed on Safari (but not MSIE) at one time + c=(t+ui*n[0]); + c = (c - (c & mask)) / radix; + t=x[i]; + + //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed + j=1; + for (;j<ky-4;) { + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + } + for (;j<ky;) { + c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + } + for (;j<kn-4;) { + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + } + for (;j<kn;) { + c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + } + for (;j<ks;) { + c+=sa[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++; + } + sa[j-1]=c & mask; + } + + if (!greater(n,sa)) + sub_(sa,n); + copy_(x,sa); + } + + + // otr.js additions + + + // computes num / den mod n + function divMod(num, den, n) { + return multMod(num, inverseMod(den, n), n) + } + + // computes one - two mod n + function subMod(one, two, n) { + one = mod(one, n) + two = mod(two, n) + if (greater(two, one)) one = add(one, n) + return sub(one, two) + } + + // computes 2^m as a bigInt + function twoToThe(m) { + var b = Math.floor(m / bpe) + 2 + var t = new Array(b) + for (var i = 0; i < b; i++) t[i] = 0 + t[b - 2] = 1 << (m % bpe) + return t + } + + // cache these results for faster lookup + var _num2bin = (function () { + var i = 0, _num2bin= {} + for (; i < 0x100; ++i) { + _num2bin[i] = String.fromCharCode(i) // 0 -> "\00" + } + return _num2bin + }()) + + // serialize a bigInt to an ascii string + // padded up to pad length + function bigInt2bits(bi, pad) { + pad || (pad = 0) + bi = dup(bi) + var ba = '' + while (!isZero(bi)) { + ba = _num2bin[bi[0] & 0xff] + ba + rightShift_(bi, 8) + } + while (ba.length < pad) { + ba = '\x00' + ba + } + return ba + } + + // converts a byte array to a bigInt + function ba2bigInt(data) { + var mpi = str2bigInt('0', 10, data.length) + data.forEach(function (d, i) { + if (i) leftShift_(mpi, 8) + mpi[0] |= d + }) + return mpi + } + + // returns a function that returns an array of n bytes + var randomBytes = (function () { + + // in node + if ( typeof crypto !== 'undefined' && + typeof crypto.randomBytes === 'function' ) { + return function (n) { + try { + var buf = crypto.randomBytes(n) + } catch (e) { throw e } + return Array.prototype.slice.call(buf, 0) + } + } + + // in browser + else if ( typeof crypto !== 'undefined' && + typeof crypto.getRandomValues === 'function' ) { + return function (n) { + var buf = new Uint8Array(n) + crypto.getRandomValues(buf) + return Array.prototype.slice.call(buf, 0) + } + } + + // err + else { + throw new Error('Keys should not be generated without CSPRNG.') + } + + }()) + + // Salsa 20 in webworker needs a 40 byte seed + function getSeed() { + return randomBytes(40) + } + + // returns a single random byte + function randomByte() { + return randomBytes(1)[0] + } + + // returns a k-bit random integer + function randomBitInt(k) { + if (k > 31) throw new Error("Too many bits.") + var i = 0, r = 0 + var b = Math.floor(k / 8) + var mask = (1 << (k % 8)) - 1 + if (mask) r = randomByte() & mask + for (; i < b; i++) + r = (256 * r) + randomByte() + return r + } + + return { + str2bigInt : str2bigInt + , bigInt2str : bigInt2str + , int2bigInt : int2bigInt + , multMod : multMod + , powMod : powMod + , inverseMod : inverseMod + , randBigInt : randBigInt + , randBigInt_ : randBigInt_ + , equals : equals + , equalsInt : equalsInt + , sub : sub + , mod : mod + , modInt : modInt + , mult : mult + , divInt_ : divInt_ + , rightShift_ : rightShift_ + , dup : dup + , greater : greater + , add : add + , isZero : isZero + , bitSize : bitSize + , millerRabin : millerRabin + , divide_ : divide_ + , trim : trim + , primes : primes + , findPrimes : findPrimes + , getSeed : getSeed + , divMod : divMod + , subMod : subMod + , twoToThe : twoToThe + , bigInt2bits : bigInt2bits + , ba2bigInt : ba2bigInt + } + +}))