view scripts/minifier/otr/dep/crypto.js @ 148:7d71592778f1

flatpak (jp): added metadata (appdata) + icon (+missing category for Primitivus)
author Goffi <goffi@goffi.org>
date Mon, 24 Jun 2019 09:13:48 +0200
parents 1596660ddf72
children
line wrap: on
line source

;(function (root, factory) {

  if (typeof define === "function" && define.amd) {
    define(factory)
  } else if (typeof module !== 'undefined' && module.exports) {
    module.exports = factory()
  } else {
    root.CryptoJS = factory()
  }

}(this, function () {

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * CryptoJS core components.
 */
var CryptoJS = CryptoJS || (function (Math, undefined) {
    /**
     * CryptoJS namespace.
     */
    var C = {};

    /**
     * Library namespace.
     */
    var C_lib = C.lib = {};

    /**
     * Base object for prototypal inheritance.
     */
    var Base = C_lib.Base = (function () {
        function F() {}

        return {
            /**
             * Creates a new object that inherits from this object.
             *
             * @param {Object} overrides Properties to copy into the new object.
             *
             * @return {Object} The new object.
             *
             * @static
             *
             * @example
             *
             *     var MyType = CryptoJS.lib.Base.extend({
             *         field: 'value',
             *
             *         method: function () {
             *         }
             *     });
             */
            extend: function (overrides) {
                // Spawn
                F.prototype = this;
                var subtype = new F();

                // Augment
                if (overrides) {
                    subtype.mixIn(overrides);
                }

                // Create default initializer
                if (!subtype.hasOwnProperty('init')) {
                    subtype.init = function () {
                        subtype.$super.init.apply(this, arguments);
                    };
                }

                // Initializer's prototype is the subtype object
                subtype.init.prototype = subtype;

                // Reference supertype
                subtype.$super = this;

                return subtype;
            },

            /**
             * Extends this object and runs the init method.
             * Arguments to create() will be passed to init().
             *
             * @return {Object} The new object.
             *
             * @static
             *
             * @example
             *
             *     var instance = MyType.create();
             */
            create: function () {
                var instance = this.extend();
                instance.init.apply(instance, arguments);

                return instance;
            },

            /**
             * Initializes a newly created object.
             * Override this method to add some logic when your objects are created.
             *
             * @example
             *
             *     var MyType = CryptoJS.lib.Base.extend({
             *         init: function () {
             *             // ...
             *         }
             *     });
             */
            init: function () {
            },

            /**
             * Copies properties into this object.
             *
             * @param {Object} properties The properties to mix in.
             *
             * @example
             *
             *     MyType.mixIn({
             *         field: 'value'
             *     });
             */
            mixIn: function (properties) {
                for (var propertyName in properties) {
                    if (properties.hasOwnProperty(propertyName)) {
                        this[propertyName] = properties[propertyName];
                    }
                }

                // IE won't copy toString using the loop above
                if (properties.hasOwnProperty('toString')) {
                    this.toString = properties.toString;
                }
            },

            /**
             * Creates a copy of this object.
             *
             * @return {Object} The clone.
             *
             * @example
             *
             *     var clone = instance.clone();
             */
            clone: function () {
                return this.init.prototype.extend(this);
            }
        };
    }());

    /**
     * An array of 32-bit words.
     *
     * @property {Array} words The array of 32-bit words.
     * @property {number} sigBytes The number of significant bytes in this word array.
     */
    var WordArray = C_lib.WordArray = Base.extend({
        /**
         * Initializes a newly created word array.
         *
         * @param {Array} words (Optional) An array of 32-bit words.
         * @param {number} sigBytes (Optional) The number of significant bytes in the words.
         *
         * @example
         *
         *     var wordArray = CryptoJS.lib.WordArray.create();
         *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
         *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
         */
        init: function (words, sigBytes) {
            words = this.words = words || [];

            if (sigBytes != undefined) {
                this.sigBytes = sigBytes;
            } else {
                this.sigBytes = words.length * 4;
            }
        },

        /**
         * Converts this word array to a string.
         *
         * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
         *
         * @return {string} The stringified word array.
         *
         * @example
         *
         *     var string = wordArray + '';
         *     var string = wordArray.toString();
         *     var string = wordArray.toString(CryptoJS.enc.Utf8);
         */
        toString: function (encoder) {
            return (encoder || Hex).stringify(this);
        },

        /**
         * Concatenates a word array to this word array.
         *
         * @param {WordArray} wordArray The word array to append.
         *
         * @return {WordArray} This word array.
         *
         * @example
         *
         *     wordArray1.concat(wordArray2);
         */
        concat: function (wordArray) {
            // Shortcuts
            var thisWords = this.words;
            var thatWords = wordArray.words;
            var thisSigBytes = this.sigBytes;
            var thatSigBytes = wordArray.sigBytes;

            // Clamp excess bits
            this.clamp();

            // Concat
            if (thisSigBytes % 4) {
                // Copy one byte at a time
                for (var i = 0; i < thatSigBytes; i++) {
                    var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                    thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
                }
            } else if (thatWords.length > 0xffff) {
                // Copy one word at a time
                for (var i = 0; i < thatSigBytes; i += 4) {
                    thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
                }
            } else {
                // Copy all words at once
                thisWords.push.apply(thisWords, thatWords);
            }
            this.sigBytes += thatSigBytes;

            // Chainable
            return this;
        },

        /**
         * Removes insignificant bits.
         *
         * @example
         *
         *     wordArray.clamp();
         */
        clamp: function () {
            // Shortcuts
            var words = this.words;
            var sigBytes = this.sigBytes;

            // Clamp
            words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
            words.length = Math.ceil(sigBytes / 4);
        },

        /**
         * Creates a copy of this word array.
         *
         * @return {WordArray} The clone.
         *
         * @example
         *
         *     var clone = wordArray.clone();
         */
        clone: function () {
            var clone = Base.clone.call(this);
            clone.words = this.words.slice(0);

            return clone;
        },

        /**
         * Creates a word array filled with random bytes.
         *
         * @param {number} nBytes The number of random bytes to generate.
         *
         * @return {WordArray} The random word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.lib.WordArray.random(16);
         */
        random: function (nBytes) {
            var words = [];
            for (var i = 0; i < nBytes; i += 4) {
                words.push((Math.random() * 0x100000000) | 0);
            }

            return new WordArray.init(words, nBytes);
        }
    });

    /**
     * Encoder namespace.
     */
    var C_enc = C.enc = {};

    /**
     * Hex encoding strategy.
     */
    var Hex = C_enc.Hex = {
        /**
         * Converts a word array to a hex string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The hex string.
         *
         * @static
         *
         * @example
         *
         *     var hexString = CryptoJS.enc.Hex.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;

            // Convert
            var hexChars = [];
            for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                hexChars.push((bite >>> 4).toString(16));
                hexChars.push((bite & 0x0f).toString(16));
            }

            return hexChars.join('');
        },

        /**
         * Converts a hex string to a word array.
         *
         * @param {string} hexStr The hex string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Hex.parse(hexString);
         */
        parse: function (hexStr) {
            // Shortcut
            var hexStrLength = hexStr.length;

            // Convert
            var words = [];
            for (var i = 0; i < hexStrLength; i += 2) {
                words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
            }

            return new WordArray.init(words, hexStrLength / 2);
        }
    };

    /**
     * Latin1 encoding strategy.
     */
    var Latin1 = C_enc.Latin1 = {
        /**
         * Converts a word array to a Latin1 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The Latin1 string.
         *
         * @static
         *
         * @example
         *
         *     var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;

            // Convert
            var latin1Chars = [];
            for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                latin1Chars.push(String.fromCharCode(bite));
            }

            return latin1Chars.join('');
        },

        /**
         * Converts a Latin1 string to a word array.
         *
         * @param {string} latin1Str The Latin1 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
         */
        parse: function (latin1Str) {
            // Shortcut
            var latin1StrLength = latin1Str.length;

            // Convert
            var words = [];
            for (var i = 0; i < latin1StrLength; i++) {
                words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
            }

            return new WordArray.init(words, latin1StrLength);
        }
    };

    /**
     * UTF-8 encoding strategy.
     */
    var Utf8 = C_enc.Utf8 = {
        /**
         * Converts a word array to a UTF-8 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The UTF-8 string.
         *
         * @static
         *
         * @example
         *
         *     var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
         */
        stringify: function (wordArray) {
            try {
                return decodeURIComponent(escape(Latin1.stringify(wordArray)));
            } catch (e) {
                throw new Error('Malformed UTF-8 data');
            }
        },

        /**
         * Converts a UTF-8 string to a word array.
         *
         * @param {string} utf8Str The UTF-8 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
         */
        parse: function (utf8Str) {
            return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
        }
    };

    /**
     * Abstract buffered block algorithm template.
     *
     * The property blockSize must be implemented in a concrete subtype.
     *
     * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
     */
    var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
        /**
         * Resets this block algorithm's data buffer to its initial state.
         *
         * @example
         *
         *     bufferedBlockAlgorithm.reset();
         */
        reset: function () {
            // Initial values
            this._data = new WordArray.init();
            this._nDataBytes = 0;
        },

        /**
         * Adds new data to this block algorithm's buffer.
         *
         * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
         *
         * @example
         *
         *     bufferedBlockAlgorithm._append('data');
         *     bufferedBlockAlgorithm._append(wordArray);
         */
        _append: function (data) {
            // Convert string to WordArray, else assume WordArray already
            if (typeof data == 'string') {
                data = Utf8.parse(data);
            }

            // Append
            this._data.concat(data);
            this._nDataBytes += data.sigBytes;
        },

        /**
         * Processes available data blocks.
         *
         * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
         *
         * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
         *
         * @return {WordArray} The processed data.
         *
         * @example
         *
         *     var processedData = bufferedBlockAlgorithm._process();
         *     var processedData = bufferedBlockAlgorithm._process(!!'flush');
         */
        _process: function (doFlush) {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var dataSigBytes = data.sigBytes;
            var blockSize = this.blockSize;
            var blockSizeBytes = blockSize * 4;

            // Count blocks ready
            var nBlocksReady = dataSigBytes / blockSizeBytes;
            if (doFlush) {
                // Round up to include partial blocks
                nBlocksReady = Math.ceil(nBlocksReady);
            } else {
                // Round down to include only full blocks,
                // less the number of blocks that must remain in the buffer
                nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
            }

            // Count words ready
            var nWordsReady = nBlocksReady * blockSize;

            // Count bytes ready
            var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);

            // Process blocks
            if (nWordsReady) {
                for (var offset = 0; offset < nWordsReady; offset += blockSize) {
                    // Perform concrete-algorithm logic
                    this._doProcessBlock(dataWords, offset);
                }

                // Remove processed words
                var processedWords = dataWords.splice(0, nWordsReady);
                data.sigBytes -= nBytesReady;
            }

            // Return processed words
            return new WordArray.init(processedWords, nBytesReady);
        },

        /**
         * Creates a copy of this object.
         *
         * @return {Object} The clone.
         *
         * @example
         *
         *     var clone = bufferedBlockAlgorithm.clone();
         */
        clone: function () {
            var clone = Base.clone.call(this);
            clone._data = this._data.clone();

            return clone;
        },

        _minBufferSize: 0
    });

    /**
     * Abstract hasher template.
     *
     * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
     */
    var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
        /**
         * Configuration options.
         */
        cfg: Base.extend(),

        /**
         * Initializes a newly created hasher.
         *
         * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
         *
         * @example
         *
         *     var hasher = CryptoJS.algo.SHA256.create();
         */
        init: function (cfg) {
            // Apply config defaults
            this.cfg = this.cfg.extend(cfg);

            // Set initial values
            this.reset();
        },

        /**
         * Resets this hasher to its initial state.
         *
         * @example
         *
         *     hasher.reset();
         */
        reset: function () {
            // Reset data buffer
            BufferedBlockAlgorithm.reset.call(this);

            // Perform concrete-hasher logic
            this._doReset();
        },

        /**
         * Updates this hasher with a message.
         *
         * @param {WordArray|string} messageUpdate The message to append.
         *
         * @return {Hasher} This hasher.
         *
         * @example
         *
         *     hasher.update('message');
         *     hasher.update(wordArray);
         */
        update: function (messageUpdate) {
            // Append
            this._append(messageUpdate);

            // Update the hash
            this._process();

            // Chainable
            return this;
        },

        /**
         * Finalizes the hash computation.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} messageUpdate (Optional) A final message update.
         *
         * @return {WordArray} The hash.
         *
         * @example
         *
         *     var hash = hasher.finalize();
         *     var hash = hasher.finalize('message');
         *     var hash = hasher.finalize(wordArray);
         */
        finalize: function (messageUpdate) {
            // Final message update
            if (messageUpdate) {
                this._append(messageUpdate);
            }

            // Perform concrete-hasher logic
            var hash = this._doFinalize();

            return hash;
        },

        blockSize: 512/32,

        /**
         * Creates a shortcut function to a hasher's object interface.
         *
         * @param {Hasher} hasher The hasher to create a helper for.
         *
         * @return {Function} The shortcut function.
         *
         * @static
         *
         * @example
         *
         *     var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
         */
        _createHelper: function (hasher) {
            return function (message, cfg) {
                return new hasher.init(cfg).finalize(message);
            };
        },

        /**
         * Creates a shortcut function to the HMAC's object interface.
         *
         * @param {Hasher} hasher The hasher to use in this HMAC helper.
         *
         * @return {Function} The shortcut function.
         *
         * @static
         *
         * @example
         *
         *     var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
         */
        _createHmacHelper: function (hasher) {
            return function (message, key) {
                return new C_algo.HMAC.init(hasher, key).finalize(message);
            };
        }
    });

    /**
     * Algorithm namespace.
     */
    var C_algo = C.algo = {};

    return C;
}(Math));

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var C_enc = C.enc;

    /**
     * Base64 encoding strategy.
     */
    var Base64 = C_enc.Base64 = {
        /**
         * Converts a word array to a Base64 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The Base64 string.
         *
         * @static
         *
         * @example
         *
         *     var base64String = CryptoJS.enc.Base64.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            var map = this._map;

            // Clamp excess bits
            wordArray.clamp();

            // Convert
            var base64Chars = [];
            for (var i = 0; i < sigBytes; i += 3) {
                var byte1 = (words[i >>> 2]       >>> (24 - (i % 4) * 8))       & 0xff;
                var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
                var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;

                var triplet = (byte1 << 16) | (byte2 << 8) | byte3;

                for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
                    base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
                }
            }

            // Add padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
                while (base64Chars.length % 4) {
                    base64Chars.push(paddingChar);
                }
            }

            return base64Chars.join('');
        },

        /**
         * Converts a Base64 string to a word array.
         *
         * @param {string} base64Str The Base64 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Base64.parse(base64String);
         */
        parse: function (base64Str) {
            // Shortcuts
            var base64StrLength = base64Str.length;
            var map = this._map;

            // Ignore padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
                var paddingIndex = base64Str.indexOf(paddingChar);
                if (paddingIndex != -1) {
                    base64StrLength = paddingIndex;
                }
            }

            // Convert
            var words = [];
            var nBytes = 0;
            for (var i = 0; i < base64StrLength; i++) {
                if (i % 4) {
                    var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
                    var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
                    words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
                    nBytes++;
                }
            }

            return WordArray.create(words, nBytes);
        },

        _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
    };
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * Cipher core components.
 */
CryptoJS.lib.Cipher || (function (undefined) {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var Base = C_lib.Base;
    var WordArray = C_lib.WordArray;
    var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
    var C_enc = C.enc;
    var Utf8 = C_enc.Utf8;
    var Base64 = C_enc.Base64;
    var C_algo = C.algo;
    var EvpKDF = C_algo.EvpKDF;

    /**
     * Abstract base cipher template.
     *
     * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
     * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
     * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
     * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
     */
    var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
        /**
         * Configuration options.
         *
         * @property {WordArray} iv The IV to use for this operation.
         */
        cfg: Base.extend(),

        /**
         * Creates this cipher in encryption mode.
         *
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {Cipher} A cipher instance.
         *
         * @static
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
         */
        createEncryptor: function (key, cfg) {
            return this.create(this._ENC_XFORM_MODE, key, cfg);
        },

        /**
         * Creates this cipher in decryption mode.
         *
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {Cipher} A cipher instance.
         *
         * @static
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
         */
        createDecryptor: function (key, cfg) {
            return this.create(this._DEC_XFORM_MODE, key, cfg);
        },

        /**
         * Initializes a newly created cipher.
         *
         * @param {number} xformMode Either the encryption or decryption transormation mode constant.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
         */
        init: function (xformMode, key, cfg) {
            // Apply config defaults
            this.cfg = this.cfg.extend(cfg);

            // Store transform mode and key
            this._xformMode = xformMode;
            this._key = key;

            // Set initial values
            this.reset();
        },

        /**
         * Resets this cipher to its initial state.
         *
         * @example
         *
         *     cipher.reset();
         */
        reset: function () {
            // Reset data buffer
            BufferedBlockAlgorithm.reset.call(this);

            // Perform concrete-cipher logic
            this._doReset();
        },

        /**
         * Adds data to be encrypted or decrypted.
         *
         * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
         *
         * @return {WordArray} The data after processing.
         *
         * @example
         *
         *     var encrypted = cipher.process('data');
         *     var encrypted = cipher.process(wordArray);
         */
        process: function (dataUpdate) {
            // Append
            this._append(dataUpdate);

            // Process available blocks
            return this._process();
        },

        /**
         * Finalizes the encryption or decryption process.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
         *
         * @return {WordArray} The data after final processing.
         *
         * @example
         *
         *     var encrypted = cipher.finalize();
         *     var encrypted = cipher.finalize('data');
         *     var encrypted = cipher.finalize(wordArray);
         */
        finalize: function (dataUpdate) {
            // Final data update
            if (dataUpdate) {
                this._append(dataUpdate);
            }

            // Perform concrete-cipher logic
            var finalProcessedData = this._doFinalize();

            return finalProcessedData;
        },

        keySize: 128/32,

        ivSize: 128/32,

        _ENC_XFORM_MODE: 1,

        _DEC_XFORM_MODE: 2,

        /**
         * Creates shortcut functions to a cipher's object interface.
         *
         * @param {Cipher} cipher The cipher to create a helper for.
         *
         * @return {Object} An object with encrypt and decrypt shortcut functions.
         *
         * @static
         *
         * @example
         *
         *     var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
         */
        _createHelper: (function () {
            function selectCipherStrategy(key) {
                if (typeof key == 'string') {
                    return PasswordBasedCipher;
                } else {
                    return SerializableCipher;
                }
            }

            return function (cipher) {
                return {
                    encrypt: function (message, key, cfg) {
                        return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
                    },

                    decrypt: function (ciphertext, key, cfg) {
                        return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
                    }
                };
            };
        }())
    });

    /**
     * Abstract base stream cipher template.
     *
     * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
     */
    var StreamCipher = C_lib.StreamCipher = Cipher.extend({
        _doFinalize: function () {
            // Process partial blocks
            var finalProcessedBlocks = this._process(!!'flush');

            return finalProcessedBlocks;
        },

        blockSize: 1
    });

    /**
     * Mode namespace.
     */
    var C_mode = C.mode = {};

    /**
     * Abstract base block cipher mode template.
     */
    var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
        /**
         * Creates this mode for encryption.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @static
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
         */
        createEncryptor: function (cipher, iv) {
            return this.Encryptor.create(cipher, iv);
        },

        /**
         * Creates this mode for decryption.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @static
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
         */
        createDecryptor: function (cipher, iv) {
            return this.Decryptor.create(cipher, iv);
        },

        /**
         * Initializes a newly created mode.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
         */
        init: function (cipher, iv) {
            this._cipher = cipher;
            this._iv = iv;
        }
    });

    /**
     * Cipher Block Chaining mode.
     */
    var CBC = C_mode.CBC = (function () {
        /**
         * Abstract base CBC mode.
         */
        var CBC = BlockCipherMode.extend();

        /**
         * CBC encryptor.
         */
        CBC.Encryptor = CBC.extend({
            /**
             * Processes the data block at offset.
             *
             * @param {Array} words The data words to operate on.
             * @param {number} offset The offset where the block starts.
             *
             * @example
             *
             *     mode.processBlock(data.words, offset);
             */
            processBlock: function (words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;

                // XOR and encrypt
                xorBlock.call(this, words, offset, blockSize);
                cipher.encryptBlock(words, offset);

                // Remember this block to use with next block
                this._prevBlock = words.slice(offset, offset + blockSize);
            }
        });

        /**
         * CBC decryptor.
         */
        CBC.Decryptor = CBC.extend({
            /**
             * Processes the data block at offset.
             *
             * @param {Array} words The data words to operate on.
             * @param {number} offset The offset where the block starts.
             *
             * @example
             *
             *     mode.processBlock(data.words, offset);
             */
            processBlock: function (words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;

                // Remember this block to use with next block
                var thisBlock = words.slice(offset, offset + blockSize);

                // Decrypt and XOR
                cipher.decryptBlock(words, offset);
                xorBlock.call(this, words, offset, blockSize);

                // This block becomes the previous block
                this._prevBlock = thisBlock;
            }
        });

        function xorBlock(words, offset, blockSize) {
            // Shortcut
            var iv = this._iv;

            // Choose mixing block
            if (iv) {
                var block = iv;

                // Remove IV for subsequent blocks
                this._iv = undefined;
            } else {
                var block = this._prevBlock;
            }

            // XOR blocks
            for (var i = 0; i < blockSize; i++) {
                words[offset + i] ^= block[i];
            }
        }

        return CBC;
    }());

    /**
     * Padding namespace.
     */
    var C_pad = C.pad = {};

    /**
     * PKCS #5/7 padding strategy.
     */
    var Pkcs7 = C_pad.Pkcs7 = {
        /**
         * Pads data using the algorithm defined in PKCS #5/7.
         *
         * @param {WordArray} data The data to pad.
         * @param {number} blockSize The multiple that the data should be padded to.
         *
         * @static
         *
         * @example
         *
         *     CryptoJS.pad.Pkcs7.pad(wordArray, 4);
         */
        pad: function (data, blockSize) {
            // Shortcut
            var blockSizeBytes = blockSize * 4;

            // Count padding bytes
            var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;

            // Create padding word
            var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;

            // Create padding
            var paddingWords = [];
            for (var i = 0; i < nPaddingBytes; i += 4) {
                paddingWords.push(paddingWord);
            }
            var padding = WordArray.create(paddingWords, nPaddingBytes);

            // Add padding
            data.concat(padding);
        },

        /**
         * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
         *
         * @param {WordArray} data The data to unpad.
         *
         * @static
         *
         * @example
         *
         *     CryptoJS.pad.Pkcs7.unpad(wordArray);
         */
        unpad: function (data) {
            // Get number of padding bytes from last byte
            var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;

            // Remove padding
            data.sigBytes -= nPaddingBytes;
        }
    };

    /**
     * Abstract base block cipher template.
     *
     * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
     */
    var BlockCipher = C_lib.BlockCipher = Cipher.extend({
        /**
         * Configuration options.
         *
         * @property {Mode} mode The block mode to use. Default: CBC
         * @property {Padding} padding The padding strategy to use. Default: Pkcs7
         */
        cfg: Cipher.cfg.extend({
            mode: CBC,
            padding: Pkcs7
        }),

        reset: function () {
            // Reset cipher
            Cipher.reset.call(this);

            // Shortcuts
            var cfg = this.cfg;
            var iv = cfg.iv;
            var mode = cfg.mode;

            // Reset block mode
            if (this._xformMode == this._ENC_XFORM_MODE) {
                var modeCreator = mode.createEncryptor;
            } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                var modeCreator = mode.createDecryptor;

                // Keep at least one block in the buffer for unpadding
                this._minBufferSize = 1;
            }
            this._mode = modeCreator.call(mode, this, iv && iv.words);
        },

        _doProcessBlock: function (words, offset) {
            this._mode.processBlock(words, offset);
        },

        _doFinalize: function () {
            // Shortcut
            var padding = this.cfg.padding;

            // Finalize
            if (this._xformMode == this._ENC_XFORM_MODE) {
                // Pad data
                padding.pad(this._data, this.blockSize);

                // Process final blocks
                var finalProcessedBlocks = this._process(!!'flush');
            } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                // Process final blocks
                var finalProcessedBlocks = this._process(!!'flush');

                // Unpad data
                padding.unpad(finalProcessedBlocks);
            }

            return finalProcessedBlocks;
        },

        blockSize: 128/32
    });

    /**
     * A collection of cipher parameters.
     *
     * @property {WordArray} ciphertext The raw ciphertext.
     * @property {WordArray} key The key to this ciphertext.
     * @property {WordArray} iv The IV used in the ciphering operation.
     * @property {WordArray} salt The salt used with a key derivation function.
     * @property {Cipher} algorithm The cipher algorithm.
     * @property {Mode} mode The block mode used in the ciphering operation.
     * @property {Padding} padding The padding scheme used in the ciphering operation.
     * @property {number} blockSize The block size of the cipher.
     * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
     */
    var CipherParams = C_lib.CipherParams = Base.extend({
        /**
         * Initializes a newly created cipher params object.
         *
         * @param {Object} cipherParams An object with any of the possible cipher parameters.
         *
         * @example
         *
         *     var cipherParams = CryptoJS.lib.CipherParams.create({
         *         ciphertext: ciphertextWordArray,
         *         key: keyWordArray,
         *         iv: ivWordArray,
         *         salt: saltWordArray,
         *         algorithm: CryptoJS.algo.AES,
         *         mode: CryptoJS.mode.CBC,
         *         padding: CryptoJS.pad.PKCS7,
         *         blockSize: 4,
         *         formatter: CryptoJS.format.OpenSSL
         *     });
         */
        init: function (cipherParams) {
            this.mixIn(cipherParams);
        },

        /**
         * Converts this cipher params object to a string.
         *
         * @param {Format} formatter (Optional) The formatting strategy to use.
         *
         * @return {string} The stringified cipher params.
         *
         * @throws Error If neither the formatter nor the default formatter is set.
         *
         * @example
         *
         *     var string = cipherParams + '';
         *     var string = cipherParams.toString();
         *     var string = cipherParams.toString(CryptoJS.format.OpenSSL);
         */
        toString: function (formatter) {
            return (formatter || this.formatter).stringify(this);
        }
    });

    /**
     * Format namespace.
     */
    var C_format = C.format = {};

    /**
     * OpenSSL formatting strategy.
     */
    var OpenSSLFormatter = C_format.OpenSSL = {
        /**
         * Converts a cipher params object to an OpenSSL-compatible string.
         *
         * @param {CipherParams} cipherParams The cipher params object.
         *
         * @return {string} The OpenSSL-compatible string.
         *
         * @static
         *
         * @example
         *
         *     var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
         */
        stringify: function (cipherParams) {
            // Shortcuts
            var ciphertext = cipherParams.ciphertext;
            var salt = cipherParams.salt;

            // Format
            if (salt) {
                var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
            } else {
                var wordArray = ciphertext;
            }

            return wordArray.toString(Base64);
        },

        /**
         * Converts an OpenSSL-compatible string to a cipher params object.
         *
         * @param {string} openSSLStr The OpenSSL-compatible string.
         *
         * @return {CipherParams} The cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
         */
        parse: function (openSSLStr) {
            // Parse base64
            var ciphertext = Base64.parse(openSSLStr);

            // Shortcut
            var ciphertextWords = ciphertext.words;

            // Test for salt
            if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
                // Extract salt
                var salt = WordArray.create(ciphertextWords.slice(2, 4));

                // Remove salt from ciphertext
                ciphertextWords.splice(0, 4);
                ciphertext.sigBytes -= 16;
            }

            return CipherParams.create({ ciphertext: ciphertext, salt: salt });
        }
    };

    /**
     * A cipher wrapper that returns ciphertext as a serializable cipher params object.
     */
    var SerializableCipher = C_lib.SerializableCipher = Base.extend({
        /**
         * Configuration options.
         *
         * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
         */
        cfg: Base.extend({
            format: OpenSSLFormatter
        }),

        /**
         * Encrypts a message.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {WordArray|string} message The message to encrypt.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {CipherParams} A cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         */
        encrypt: function (cipher, message, key, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Encrypt
            var encryptor = cipher.createEncryptor(key, cfg);
            var ciphertext = encryptor.finalize(message);

            // Shortcut
            var cipherCfg = encryptor.cfg;

            // Create and return serializable cipher params
            return CipherParams.create({
                ciphertext: ciphertext,
                key: key,
                iv: cipherCfg.iv,
                algorithm: cipher,
                mode: cipherCfg.mode,
                padding: cipherCfg.padding,
                blockSize: cipher.blockSize,
                formatter: cfg.format
            });
        },

        /**
         * Decrypts serialized ciphertext.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {WordArray} The plaintext.
         *
         * @static
         *
         * @example
         *
         *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         */
        decrypt: function (cipher, ciphertext, key, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Convert string to CipherParams
            ciphertext = this._parse(ciphertext, cfg.format);

            // Decrypt
            var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);

            return plaintext;
        },

        /**
         * Converts serialized ciphertext to CipherParams,
         * else assumed CipherParams already and returns ciphertext unchanged.
         *
         * @param {CipherParams|string} ciphertext The ciphertext.
         * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
         *
         * @return {CipherParams} The unserialized ciphertext.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
         */
        _parse: function (ciphertext, format) {
            if (typeof ciphertext == 'string') {
                return format.parse(ciphertext, this);
            } else {
                return ciphertext;
            }
        }
    });

    /**
     * Key derivation function namespace.
     */
    var C_kdf = C.kdf = {};

    /**
     * OpenSSL key derivation function.
     */
    var OpenSSLKdf = C_kdf.OpenSSL = {
        /**
         * Derives a key and IV from a password.
         *
         * @param {string} password The password to derive from.
         * @param {number} keySize The size in words of the key to generate.
         * @param {number} ivSize The size in words of the IV to generate.
         * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
         *
         * @return {CipherParams} A cipher params object with the key, IV, and salt.
         *
         * @static
         *
         * @example
         *
         *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
         *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
         */
        execute: function (password, keySize, ivSize, salt) {
            // Generate random salt
            if (!salt) {
                salt = WordArray.random(64/8);
            }

            // Derive key and IV
            var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);

            // Separate key and IV
            var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
            key.sigBytes = keySize * 4;

            // Return params
            return CipherParams.create({ key: key, iv: iv, salt: salt });
        }
    };

    /**
     * A serializable cipher wrapper that derives the key from a password,
     * and returns ciphertext as a serializable cipher params object.
     */
    var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
        /**
         * Configuration options.
         *
         * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
         */
        cfg: SerializableCipher.cfg.extend({
            kdf: OpenSSLKdf
        }),

        /**
         * Encrypts a message using a password.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {WordArray|string} message The message to encrypt.
         * @param {string} password The password.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {CipherParams} A cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
         *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
         */
        encrypt: function (cipher, message, password, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Derive key and other params
            var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);

            // Add IV to config
            cfg.iv = derivedParams.iv;

            // Encrypt
            var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);

            // Mix in derived params
            ciphertext.mixIn(derivedParams);

            return ciphertext;
        },

        /**
         * Decrypts serialized ciphertext using a password.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
         * @param {string} password The password.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {WordArray} The plaintext.
         *
         * @static
         *
         * @example
         *
         *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
         *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
         */
        decrypt: function (cipher, ciphertext, password, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Convert string to CipherParams
            ciphertext = this._parse(ciphertext, cfg.format);

            // Derive key and other params
            var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);

            // Add IV to config
            cfg.iv = derivedParams.iv;

            // Decrypt
            var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);

            return plaintext;
        }
    });
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var BlockCipher = C_lib.BlockCipher;
    var C_algo = C.algo;

    // Lookup tables
    var SBOX = [];
    var INV_SBOX = [];
    var SUB_MIX_0 = [];
    var SUB_MIX_1 = [];
    var SUB_MIX_2 = [];
    var SUB_MIX_3 = [];
    var INV_SUB_MIX_0 = [];
    var INV_SUB_MIX_1 = [];
    var INV_SUB_MIX_2 = [];
    var INV_SUB_MIX_3 = [];

    // Compute lookup tables
    (function () {
        // Compute double table
        var d = [];
        for (var i = 0; i < 256; i++) {
            if (i < 128) {
                d[i] = i << 1;
            } else {
                d[i] = (i << 1) ^ 0x11b;
            }
        }

        // Walk GF(2^8)
        var x = 0;
        var xi = 0;
        for (var i = 0; i < 256; i++) {
            // Compute sbox
            var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
            sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
            SBOX[x] = sx;
            INV_SBOX[sx] = x;

            // Compute multiplication
            var x2 = d[x];
            var x4 = d[x2];
            var x8 = d[x4];

            // Compute sub bytes, mix columns tables
            var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
            SUB_MIX_0[x] = (t << 24) | (t >>> 8);
            SUB_MIX_1[x] = (t << 16) | (t >>> 16);
            SUB_MIX_2[x] = (t << 8)  | (t >>> 24);
            SUB_MIX_3[x] = t;

            // Compute inv sub bytes, inv mix columns tables
            var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
            INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
            INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
            INV_SUB_MIX_2[sx] = (t << 8)  | (t >>> 24);
            INV_SUB_MIX_3[sx] = t;

            // Compute next counter
            if (!x) {
                x = xi = 1;
            } else {
                x = x2 ^ d[d[d[x8 ^ x2]]];
                xi ^= d[d[xi]];
            }
        }
    }());

    // Precomputed Rcon lookup
    var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];

    /**
     * AES block cipher algorithm.
     */
    var AES = C_algo.AES = BlockCipher.extend({
        _doReset: function () {
            // Shortcuts
            var key = this._key;
            var keyWords = key.words;
            var keySize = key.sigBytes / 4;

            // Compute number of rounds
            var nRounds = this._nRounds = keySize + 6

            // Compute number of key schedule rows
            var ksRows = (nRounds + 1) * 4;

            // Compute key schedule
            var keySchedule = this._keySchedule = [];
            for (var ksRow = 0; ksRow < ksRows; ksRow++) {
                if (ksRow < keySize) {
                    keySchedule[ksRow] = keyWords[ksRow];
                } else {
                    var t = keySchedule[ksRow - 1];

                    if (!(ksRow % keySize)) {
                        // Rot word
                        t = (t << 8) | (t >>> 24);

                        // Sub word
                        t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];

                        // Mix Rcon
                        t ^= RCON[(ksRow / keySize) | 0] << 24;
                    } else if (keySize > 6 && ksRow % keySize == 4) {
                        // Sub word
                        t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
                    }

                    keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
                }
            }

            // Compute inv key schedule
            var invKeySchedule = this._invKeySchedule = [];
            for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
                var ksRow = ksRows - invKsRow;

                if (invKsRow % 4) {
                    var t = keySchedule[ksRow];
                } else {
                    var t = keySchedule[ksRow - 4];
                }

                if (invKsRow < 4 || ksRow <= 4) {
                    invKeySchedule[invKsRow] = t;
                } else {
                    invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
                                               INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
                }
            }
        },

        encryptBlock: function (M, offset) {
            this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
        },

        decryptBlock: function (M, offset) {
            // Swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;

            this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);

            // Inv swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;
        },

        _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
            // Shortcut
            var nRounds = this._nRounds;

            // Get input, add round key
            var s0 = M[offset]     ^ keySchedule[0];
            var s1 = M[offset + 1] ^ keySchedule[1];
            var s2 = M[offset + 2] ^ keySchedule[2];
            var s3 = M[offset + 3] ^ keySchedule[3];

            // Key schedule row counter
            var ksRow = 4;

            // Rounds
            for (var round = 1; round < nRounds; round++) {
                // Shift rows, sub bytes, mix columns, add round key
                var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
                var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
                var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
                var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];

                // Update state
                s0 = t0;
                s1 = t1;
                s2 = t2;
                s3 = t3;
            }

            // Shift rows, sub bytes, add round key
            var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
            var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
            var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
            var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];

            // Set output
            M[offset]     = t0;
            M[offset + 1] = t1;
            M[offset + 2] = t2;
            M[offset + 3] = t3;
        },

        keySize: 256/32
    });

    /**
     * Shortcut functions to the cipher's object interface.
     *
     * @example
     *
     *     var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
     *     var plaintext  = CryptoJS.AES.decrypt(ciphertext, key, cfg);
     */
    C.AES = BlockCipher._createHelper(AES);
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var Hasher = C_lib.Hasher;
    var C_algo = C.algo;

    // Reusable object
    var W = [];

    /**
     * SHA-1 hash algorithm.
     */
    var SHA1 = C_algo.SHA1 = Hasher.extend({
        _doReset: function () {
            this._hash = new WordArray.init([
                0x67452301, 0xefcdab89,
                0x98badcfe, 0x10325476,
                0xc3d2e1f0
            ]);
        },

        _doProcessBlock: function (M, offset) {
            // Shortcut
            var H = this._hash.words;

            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];

            // Computation
            for (var i = 0; i < 80; i++) {
                if (i < 16) {
                    W[i] = M[offset + i] | 0;
                } else {
                    var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
                    W[i] = (n << 1) | (n >>> 31);
                }

                var t = ((a << 5) | (a >>> 27)) + e + W[i];
                if (i < 20) {
                    t += ((b & c) | (~b & d)) + 0x5a827999;
                } else if (i < 40) {
                    t += (b ^ c ^ d) + 0x6ed9eba1;
                } else if (i < 60) {
                    t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
                } else /* if (i < 80) */ {
                    t += (b ^ c ^ d) - 0x359d3e2a;
                }

                e = d;
                d = c;
                c = (b << 30) | (b >>> 2);
                b = a;
                a = t;
            }

            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
        },

        _doFinalize: function () {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;

            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;

            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;

            // Hash final blocks
            this._process();

            // Return final computed hash
            return this._hash;
        },

        clone: function () {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();

            return clone;
        }
    });

    /**
     * Shortcut function to the hasher's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     *
     * @return {WordArray} The hash.
     *
     * @static
     *
     * @example
     *
     *     var hash = CryptoJS.SHA1('message');
     *     var hash = CryptoJS.SHA1(wordArray);
     */
    C.SHA1 = Hasher._createHelper(SHA1);

    /**
     * Shortcut function to the HMAC's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     * @param {WordArray|string} key The secret key.
     *
     * @return {WordArray} The HMAC.
     *
     * @static
     *
     * @example
     *
     *     var hmac = CryptoJS.HmacSHA1(message, key);
     */
    C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function (Math) {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var Hasher = C_lib.Hasher;
    var C_algo = C.algo;

    // Initialization and round constants tables
    var H = [];
    var K = [];

    // Compute constants
    (function () {
        function isPrime(n) {
            var sqrtN = Math.sqrt(n);
            for (var factor = 2; factor <= sqrtN; factor++) {
                if (!(n % factor)) {
                    return false;
                }
            }

            return true;
        }

        function getFractionalBits(n) {
            return ((n - (n | 0)) * 0x100000000) | 0;
        }

        var n = 2;
        var nPrime = 0;
        while (nPrime < 64) {
            if (isPrime(n)) {
                if (nPrime < 8) {
                    H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
                }
                K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));

                nPrime++;
            }

            n++;
        }
    }());

    // Reusable object
    var W = [];

    /**
     * SHA-256 hash algorithm.
     */
    var SHA256 = C_algo.SHA256 = Hasher.extend({
        _doReset: function () {
            this._hash = new WordArray.init(H.slice(0));
        },

        _doProcessBlock: function (M, offset) {
            // Shortcut
            var H = this._hash.words;

            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];
            var f = H[5];
            var g = H[6];
            var h = H[7];

            // Computation
            for (var i = 0; i < 64; i++) {
                if (i < 16) {
                    W[i] = M[offset + i] | 0;
                } else {
                    var gamma0x = W[i - 15];
                    var gamma0  = ((gamma0x << 25) | (gamma0x >>> 7))  ^
                                  ((gamma0x << 14) | (gamma0x >>> 18)) ^
                                   (gamma0x >>> 3);

                    var gamma1x = W[i - 2];
                    var gamma1  = ((gamma1x << 15) | (gamma1x >>> 17)) ^
                                  ((gamma1x << 13) | (gamma1x >>> 19)) ^
                                   (gamma1x >>> 10);

                    W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
                }

                var ch  = (e & f) ^ (~e & g);
                var maj = (a & b) ^ (a & c) ^ (b & c);

                var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
                var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7)  | (e >>> 25));

                var t1 = h + sigma1 + ch + K[i] + W[i];
                var t2 = sigma0 + maj;

                h = g;
                g = f;
                f = e;
                e = (d + t1) | 0;
                d = c;
                c = b;
                b = a;
                a = (t1 + t2) | 0;
            }

            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
            H[5] = (H[5] + f) | 0;
            H[6] = (H[6] + g) | 0;
            H[7] = (H[7] + h) | 0;
        },

        _doFinalize: function () {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;

            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;

            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;

            // Hash final blocks
            this._process();

            // Return final computed hash
            return this._hash;
        },

        clone: function () {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();

            return clone;
        }
    });

    /**
     * Shortcut function to the hasher's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     *
     * @return {WordArray} The hash.
     *
     * @static
     *
     * @example
     *
     *     var hash = CryptoJS.SHA256('message');
     *     var hash = CryptoJS.SHA256(wordArray);
     */
    C.SHA256 = Hasher._createHelper(SHA256);

    /**
     * Shortcut function to the HMAC's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     * @param {WordArray|string} key The secret key.
     *
     * @return {WordArray} The HMAC.
     *
     * @static
     *
     * @example
     *
     *     var hmac = CryptoJS.HmacSHA256(message, key);
     */
    C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
}(Math));

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var Base = C_lib.Base;
    var C_enc = C.enc;
    var Utf8 = C_enc.Utf8;
    var C_algo = C.algo;

    /**
     * HMAC algorithm.
     */
    var HMAC = C_algo.HMAC = Base.extend({
        /**
         * Initializes a newly created HMAC.
         *
         * @param {Hasher} hasher The hash algorithm to use.
         * @param {WordArray|string} key The secret key.
         *
         * @example
         *
         *     var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
         */
        init: function (hasher, key) {
            // Init hasher
            hasher = this._hasher = new hasher.init();

            // Convert string to WordArray, else assume WordArray already
            if (typeof key == 'string') {
                key = Utf8.parse(key);
            }

            // Shortcuts
            var hasherBlockSize = hasher.blockSize;
            var hasherBlockSizeBytes = hasherBlockSize * 4;

            // Allow arbitrary length keys
            if (key.sigBytes > hasherBlockSizeBytes) {
                key = hasher.finalize(key);
            }

            // Clamp excess bits
            key.clamp();

            // Clone key for inner and outer pads
            var oKey = this._oKey = key.clone();
            var iKey = this._iKey = key.clone();

            // Shortcuts
            var oKeyWords = oKey.words;
            var iKeyWords = iKey.words;

            // XOR keys with pad constants
            for (var i = 0; i < hasherBlockSize; i++) {
                oKeyWords[i] ^= 0x5c5c5c5c;
                iKeyWords[i] ^= 0x36363636;
            }
            oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;

            // Set initial values
            this.reset();
        },

        /**
         * Resets this HMAC to its initial state.
         *
         * @example
         *
         *     hmacHasher.reset();
         */
        reset: function () {
            // Shortcut
            var hasher = this._hasher;

            // Reset
            hasher.reset();
            hasher.update(this._iKey);
        },

        /**
         * Updates this HMAC with a message.
         *
         * @param {WordArray|string} messageUpdate The message to append.
         *
         * @return {HMAC} This HMAC instance.
         *
         * @example
         *
         *     hmacHasher.update('message');
         *     hmacHasher.update(wordArray);
         */
        update: function (messageUpdate) {
            this._hasher.update(messageUpdate);

            // Chainable
            return this;
        },

        /**
         * Finalizes the HMAC computation.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} messageUpdate (Optional) A final message update.
         *
         * @return {WordArray} The HMAC.
         *
         * @example
         *
         *     var hmac = hmacHasher.finalize();
         *     var hmac = hmacHasher.finalize('message');
         *     var hmac = hmacHasher.finalize(wordArray);
         */
        finalize: function (messageUpdate) {
            // Shortcut
            var hasher = this._hasher;

            // Compute HMAC
            var innerHash = hasher.finalize(messageUpdate);
            hasher.reset();
            var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));

            return hmac;
        }
    });
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * A noop padding strategy.
 */
CryptoJS.pad.NoPadding = {
    pad: function () {
    },

    unpad: function () {
    }
};

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * Counter block mode.
 */
CryptoJS.mode.CTR = (function () {
    var CTR = CryptoJS.lib.BlockCipherMode.extend();

    var Encryptor = CTR.Encryptor = CTR.extend({
        processBlock: function (words, offset) {
            // Shortcuts
            var cipher = this._cipher
            var blockSize = cipher.blockSize;
            var iv = this._iv;
            var counter = this._counter;

            // Generate keystream
            if (iv) {
                counter = this._counter = iv.slice(0);

                // Remove IV for subsequent blocks
                this._iv = undefined;
            }
            var keystream = counter.slice(0);
            cipher.encryptBlock(keystream, 0);

            // Increment counter
            counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0

            // Encrypt
            for (var i = 0; i < blockSize; i++) {
                words[offset + i] ^= keystream[i];
            }
        }
    });

    CTR.Decryptor = Encryptor;

    return CTR;
}());


  return CryptoJS

}))