Mercurial > sat_docs
view scripts/minifier/otr/dep/crypto.js @ 61:8c5e0fab7676
video (android campaing): small corrections on english subtitles
author | Goffi <goffi@goffi.org> |
---|---|
date | Thu, 22 Oct 2015 11:39:28 +0200 |
parents | 1596660ddf72 |
children |
line wrap: on
line source
;(function (root, factory) { if (typeof define === "function" && define.amd) { define(factory) } else if (typeof module !== 'undefined' && module.exports) { module.exports = factory() } else { root.CryptoJS = factory() } }(this, function () { /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** * CryptoJS core components. */ var CryptoJS = CryptoJS || (function (Math, undefined) { /** * CryptoJS namespace. */ var C = {}; /** * Library namespace. */ var C_lib = C.lib = {}; /** * Base object for prototypal inheritance. */ var Base = C_lib.Base = (function () { function F() {} return { /** * Creates a new object that inherits from this object. * * @param {Object} overrides Properties to copy into the new object. * * @return {Object} The new object. * * @static * * @example * * var MyType = CryptoJS.lib.Base.extend({ * field: 'value', * * method: function () { * } * }); */ extend: function (overrides) { // Spawn F.prototype = this; var subtype = new F(); // Augment if (overrides) { subtype.mixIn(overrides); } // Create default initializer if (!subtype.hasOwnProperty('init')) { subtype.init = function () { subtype.$super.init.apply(this, arguments); }; } // Initializer's prototype is the subtype object subtype.init.prototype = subtype; // Reference supertype subtype.$super = this; return subtype; }, /** * Extends this object and runs the init method. * Arguments to create() will be passed to init(). * * @return {Object} The new object. * * @static * * @example * * var instance = MyType.create(); */ create: function () { var instance = this.extend(); instance.init.apply(instance, arguments); return instance; }, /** * Initializes a newly created object. * Override this method to add some logic when your objects are created. * * @example * * var MyType = CryptoJS.lib.Base.extend({ * init: function () { * // ... * } * }); */ init: function () { }, /** * Copies properties into this object. * * @param {Object} properties The properties to mix in. * * @example * * MyType.mixIn({ * field: 'value' * }); */ mixIn: function (properties) { for (var propertyName in properties) { if (properties.hasOwnProperty(propertyName)) { this[propertyName] = properties[propertyName]; } } // IE won't copy toString using the loop above if (properties.hasOwnProperty('toString')) { this.toString = properties.toString; } }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = instance.clone(); */ clone: function () { return this.init.prototype.extend(this); } }; }()); /** * An array of 32-bit words. * * @property {Array} words The array of 32-bit words. * @property {number} sigBytes The number of significant bytes in this word array. */ var WordArray = C_lib.WordArray = Base.extend({ /** * Initializes a newly created word array. * * @param {Array} words (Optional) An array of 32-bit words. * @param {number} sigBytes (Optional) The number of significant bytes in the words. * * @example * * var wordArray = CryptoJS.lib.WordArray.create(); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6); */ init: function (words, sigBytes) { words = this.words = words || []; if (sigBytes != undefined) { this.sigBytes = sigBytes; } else { this.sigBytes = words.length * 4; } }, /** * Converts this word array to a string. * * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex * * @return {string} The stringified word array. * * @example * * var string = wordArray + ''; * var string = wordArray.toString(); * var string = wordArray.toString(CryptoJS.enc.Utf8); */ toString: function (encoder) { return (encoder || Hex).stringify(this); }, /** * Concatenates a word array to this word array. * * @param {WordArray} wordArray The word array to append. * * @return {WordArray} This word array. * * @example * * wordArray1.concat(wordArray2); */ concat: function (wordArray) { // Shortcuts var thisWords = this.words; var thatWords = wordArray.words; var thisSigBytes = this.sigBytes; var thatSigBytes = wordArray.sigBytes; // Clamp excess bits this.clamp(); // Concat if (thisSigBytes % 4) { // Copy one byte at a time for (var i = 0; i < thatSigBytes; i++) { var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8); } } else if (thatWords.length > 0xffff) { // Copy one word at a time for (var i = 0; i < thatSigBytes; i += 4) { thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2]; } } else { // Copy all words at once thisWords.push.apply(thisWords, thatWords); } this.sigBytes += thatSigBytes; // Chainable return this; }, /** * Removes insignificant bits. * * @example * * wordArray.clamp(); */ clamp: function () { // Shortcuts var words = this.words; var sigBytes = this.sigBytes; // Clamp words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8); words.length = Math.ceil(sigBytes / 4); }, /** * Creates a copy of this word array. * * @return {WordArray} The clone. * * @example * * var clone = wordArray.clone(); */ clone: function () { var clone = Base.clone.call(this); clone.words = this.words.slice(0); return clone; }, /** * Creates a word array filled with random bytes. * * @param {number} nBytes The number of random bytes to generate. * * @return {WordArray} The random word array. * * @static * * @example * * var wordArray = CryptoJS.lib.WordArray.random(16); */ random: function (nBytes) { var words = []; for (var i = 0; i < nBytes; i += 4) { words.push((Math.random() * 0x100000000) | 0); } return new WordArray.init(words, nBytes); } }); /** * Encoder namespace. */ var C_enc = C.enc = {}; /** * Hex encoding strategy. */ var Hex = C_enc.Hex = { /** * Converts a word array to a hex string. * * @param {WordArray} wordArray The word array. * * @return {string} The hex string. * * @static * * @example * * var hexString = CryptoJS.enc.Hex.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var hexChars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; hexChars.push((bite >>> 4).toString(16)); hexChars.push((bite & 0x0f).toString(16)); } return hexChars.join(''); }, /** * Converts a hex string to a word array. * * @param {string} hexStr The hex string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Hex.parse(hexString); */ parse: function (hexStr) { // Shortcut var hexStrLength = hexStr.length; // Convert var words = []; for (var i = 0; i < hexStrLength; i += 2) { words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4); } return new WordArray.init(words, hexStrLength / 2); } }; /** * Latin1 encoding strategy. */ var Latin1 = C_enc.Latin1 = { /** * Converts a word array to a Latin1 string. * * @param {WordArray} wordArray The word array. * * @return {string} The Latin1 string. * * @static * * @example * * var latin1String = CryptoJS.enc.Latin1.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var latin1Chars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; latin1Chars.push(String.fromCharCode(bite)); } return latin1Chars.join(''); }, /** * Converts a Latin1 string to a word array. * * @param {string} latin1Str The Latin1 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Latin1.parse(latin1String); */ parse: function (latin1Str) { // Shortcut var latin1StrLength = latin1Str.length; // Convert var words = []; for (var i = 0; i < latin1StrLength; i++) { words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8); } return new WordArray.init(words, latin1StrLength); } }; /** * UTF-8 encoding strategy. */ var Utf8 = C_enc.Utf8 = { /** * Converts a word array to a UTF-8 string. * * @param {WordArray} wordArray The word array. * * @return {string} The UTF-8 string. * * @static * * @example * * var utf8String = CryptoJS.enc.Utf8.stringify(wordArray); */ stringify: function (wordArray) { try { return decodeURIComponent(escape(Latin1.stringify(wordArray))); } catch (e) { throw new Error('Malformed UTF-8 data'); } }, /** * Converts a UTF-8 string to a word array. * * @param {string} utf8Str The UTF-8 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Utf8.parse(utf8String); */ parse: function (utf8Str) { return Latin1.parse(unescape(encodeURIComponent(utf8Str))); } }; /** * Abstract buffered block algorithm template. * * The property blockSize must be implemented in a concrete subtype. * * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0 */ var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({ /** * Resets this block algorithm's data buffer to its initial state. * * @example * * bufferedBlockAlgorithm.reset(); */ reset: function () { // Initial values this._data = new WordArray.init(); this._nDataBytes = 0; }, /** * Adds new data to this block algorithm's buffer. * * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8. * * @example * * bufferedBlockAlgorithm._append('data'); * bufferedBlockAlgorithm._append(wordArray); */ _append: function (data) { // Convert string to WordArray, else assume WordArray already if (typeof data == 'string') { data = Utf8.parse(data); } // Append this._data.concat(data); this._nDataBytes += data.sigBytes; }, /** * Processes available data blocks. * * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype. * * @param {boolean} doFlush Whether all blocks and partial blocks should be processed. * * @return {WordArray} The processed data. * * @example * * var processedData = bufferedBlockAlgorithm._process(); * var processedData = bufferedBlockAlgorithm._process(!!'flush'); */ _process: function (doFlush) { // Shortcuts var data = this._data; var dataWords = data.words; var dataSigBytes = data.sigBytes; var blockSize = this.blockSize; var blockSizeBytes = blockSize * 4; // Count blocks ready var nBlocksReady = dataSigBytes / blockSizeBytes; if (doFlush) { // Round up to include partial blocks nBlocksReady = Math.ceil(nBlocksReady); } else { // Round down to include only full blocks, // less the number of blocks that must remain in the buffer nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0); } // Count words ready var nWordsReady = nBlocksReady * blockSize; // Count bytes ready var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes); // Process blocks if (nWordsReady) { for (var offset = 0; offset < nWordsReady; offset += blockSize) { // Perform concrete-algorithm logic this._doProcessBlock(dataWords, offset); } // Remove processed words var processedWords = dataWords.splice(0, nWordsReady); data.sigBytes -= nBytesReady; } // Return processed words return new WordArray.init(processedWords, nBytesReady); }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = bufferedBlockAlgorithm.clone(); */ clone: function () { var clone = Base.clone.call(this); clone._data = this._data.clone(); return clone; }, _minBufferSize: 0 }); /** * Abstract hasher template. * * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits) */ var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({ /** * Configuration options. */ cfg: Base.extend(), /** * Initializes a newly created hasher. * * @param {Object} cfg (Optional) The configuration options to use for this hash computation. * * @example * * var hasher = CryptoJS.algo.SHA256.create(); */ init: function (cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Set initial values this.reset(); }, /** * Resets this hasher to its initial state. * * @example * * hasher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-hasher logic this._doReset(); }, /** * Updates this hasher with a message. * * @param {WordArray|string} messageUpdate The message to append. * * @return {Hasher} This hasher. * * @example * * hasher.update('message'); * hasher.update(wordArray); */ update: function (messageUpdate) { // Append this._append(messageUpdate); // Update the hash this._process(); // Chainable return this; }, /** * Finalizes the hash computation. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} messageUpdate (Optional) A final message update. * * @return {WordArray} The hash. * * @example * * var hash = hasher.finalize(); * var hash = hasher.finalize('message'); * var hash = hasher.finalize(wordArray); */ finalize: function (messageUpdate) { // Final message update if (messageUpdate) { this._append(messageUpdate); } // Perform concrete-hasher logic var hash = this._doFinalize(); return hash; }, blockSize: 512/32, /** * Creates a shortcut function to a hasher's object interface. * * @param {Hasher} hasher The hasher to create a helper for. * * @return {Function} The shortcut function. * * @static * * @example * * var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256); */ _createHelper: function (hasher) { return function (message, cfg) { return new hasher.init(cfg).finalize(message); }; }, /** * Creates a shortcut function to the HMAC's object interface. * * @param {Hasher} hasher The hasher to use in this HMAC helper. * * @return {Function} The shortcut function. * * @static * * @example * * var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256); */ _createHmacHelper: function (hasher) { return function (message, key) { return new C_algo.HMAC.init(hasher, key).finalize(message); }; } }); /** * Algorithm namespace. */ var C_algo = C.algo = {}; return C; }(Math)); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var C_enc = C.enc; /** * Base64 encoding strategy. */ var Base64 = C_enc.Base64 = { /** * Converts a word array to a Base64 string. * * @param {WordArray} wordArray The word array. * * @return {string} The Base64 string. * * @static * * @example * * var base64String = CryptoJS.enc.Base64.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; var map = this._map; // Clamp excess bits wordArray.clamp(); // Convert var base64Chars = []; for (var i = 0; i < sigBytes; i += 3) { var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff; var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff; var triplet = (byte1 << 16) | (byte2 << 8) | byte3; for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) { base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f)); } } // Add padding var paddingChar = map.charAt(64); if (paddingChar) { while (base64Chars.length % 4) { base64Chars.push(paddingChar); } } return base64Chars.join(''); }, /** * Converts a Base64 string to a word array. * * @param {string} base64Str The Base64 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Base64.parse(base64String); */ parse: function (base64Str) { // Shortcuts var base64StrLength = base64Str.length; var map = this._map; // Ignore padding var paddingChar = map.charAt(64); if (paddingChar) { var paddingIndex = base64Str.indexOf(paddingChar); if (paddingIndex != -1) { base64StrLength = paddingIndex; } } // Convert var words = []; var nBytes = 0; for (var i = 0; i < base64StrLength; i++) { if (i % 4) { var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2); var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2); words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8); nBytes++; } } return WordArray.create(words, nBytes); }, _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' }; }()); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** * Cipher core components. */ CryptoJS.lib.Cipher || (function (undefined) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var Base64 = C_enc.Base64; var C_algo = C.algo; var EvpKDF = C_algo.EvpKDF; /** * Abstract base cipher template. * * @property {number} keySize This cipher's key size. Default: 4 (128 bits) * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits) * @property {number} _ENC_XFORM_MODE A constant representing encryption mode. * @property {number} _DEC_XFORM_MODE A constant representing decryption mode. */ var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({ /** * Configuration options. * * @property {WordArray} iv The IV to use for this operation. */ cfg: Base.extend(), /** * Creates this cipher in encryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray }); */ createEncryptor: function (key, cfg) { return this.create(this._ENC_XFORM_MODE, key, cfg); }, /** * Creates this cipher in decryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray }); */ createDecryptor: function (key, cfg) { return this.create(this._DEC_XFORM_MODE, key, cfg); }, /** * Initializes a newly created cipher. * * @param {number} xformMode Either the encryption or decryption transormation mode constant. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @example * * var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray }); */ init: function (xformMode, key, cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Store transform mode and key this._xformMode = xformMode; this._key = key; // Set initial values this.reset(); }, /** * Resets this cipher to its initial state. * * @example * * cipher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-cipher logic this._doReset(); }, /** * Adds data to be encrypted or decrypted. * * @param {WordArray|string} dataUpdate The data to encrypt or decrypt. * * @return {WordArray} The data after processing. * * @example * * var encrypted = cipher.process('data'); * var encrypted = cipher.process(wordArray); */ process: function (dataUpdate) { // Append this._append(dataUpdate); // Process available blocks return this._process(); }, /** * Finalizes the encryption or decryption process. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt. * * @return {WordArray} The data after final processing. * * @example * * var encrypted = cipher.finalize(); * var encrypted = cipher.finalize('data'); * var encrypted = cipher.finalize(wordArray); */ finalize: function (dataUpdate) { // Final data update if (dataUpdate) { this._append(dataUpdate); } // Perform concrete-cipher logic var finalProcessedData = this._doFinalize(); return finalProcessedData; }, keySize: 128/32, ivSize: 128/32, _ENC_XFORM_MODE: 1, _DEC_XFORM_MODE: 2, /** * Creates shortcut functions to a cipher's object interface. * * @param {Cipher} cipher The cipher to create a helper for. * * @return {Object} An object with encrypt and decrypt shortcut functions. * * @static * * @example * * var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES); */ _createHelper: (function () { function selectCipherStrategy(key) { if (typeof key == 'string') { return PasswordBasedCipher; } else { return SerializableCipher; } } return function (cipher) { return { encrypt: function (message, key, cfg) { return selectCipherStrategy(key).encrypt(cipher, message, key, cfg); }, decrypt: function (ciphertext, key, cfg) { return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg); } }; }; }()) }); /** * Abstract base stream cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits) */ var StreamCipher = C_lib.StreamCipher = Cipher.extend({ _doFinalize: function () { // Process partial blocks var finalProcessedBlocks = this._process(!!'flush'); return finalProcessedBlocks; }, blockSize: 1 }); /** * Mode namespace. */ var C_mode = C.mode = {}; /** * Abstract base block cipher mode template. */ var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({ /** * Creates this mode for encryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words); */ createEncryptor: function (cipher, iv) { return this.Encryptor.create(cipher, iv); }, /** * Creates this mode for decryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words); */ createDecryptor: function (cipher, iv) { return this.Decryptor.create(cipher, iv); }, /** * Initializes a newly created mode. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @example * * var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words); */ init: function (cipher, iv) { this._cipher = cipher; this._iv = iv; } }); /** * Cipher Block Chaining mode. */ var CBC = C_mode.CBC = (function () { /** * Abstract base CBC mode. */ var CBC = BlockCipherMode.extend(); /** * CBC encryptor. */ CBC.Encryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // XOR and encrypt xorBlock.call(this, words, offset, blockSize); cipher.encryptBlock(words, offset); // Remember this block to use with next block this._prevBlock = words.slice(offset, offset + blockSize); } }); /** * CBC decryptor. */ CBC.Decryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // Remember this block to use with next block var thisBlock = words.slice(offset, offset + blockSize); // Decrypt and XOR cipher.decryptBlock(words, offset); xorBlock.call(this, words, offset, blockSize); // This block becomes the previous block this._prevBlock = thisBlock; } }); function xorBlock(words, offset, blockSize) { // Shortcut var iv = this._iv; // Choose mixing block if (iv) { var block = iv; // Remove IV for subsequent blocks this._iv = undefined; } else { var block = this._prevBlock; } // XOR blocks for (var i = 0; i < blockSize; i++) { words[offset + i] ^= block[i]; } } return CBC; }()); /** * Padding namespace. */ var C_pad = C.pad = {}; /** * PKCS #5/7 padding strategy. */ var Pkcs7 = C_pad.Pkcs7 = { /** * Pads data using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to pad. * @param {number} blockSize The multiple that the data should be padded to. * * @static * * @example * * CryptoJS.pad.Pkcs7.pad(wordArray, 4); */ pad: function (data, blockSize) { // Shortcut var blockSizeBytes = blockSize * 4; // Count padding bytes var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes; // Create padding word var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes; // Create padding var paddingWords = []; for (var i = 0; i < nPaddingBytes; i += 4) { paddingWords.push(paddingWord); } var padding = WordArray.create(paddingWords, nPaddingBytes); // Add padding data.concat(padding); }, /** * Unpads data that had been padded using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to unpad. * * @static * * @example * * CryptoJS.pad.Pkcs7.unpad(wordArray); */ unpad: function (data) { // Get number of padding bytes from last byte var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff; // Remove padding data.sigBytes -= nPaddingBytes; } }; /** * Abstract base block cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits) */ var BlockCipher = C_lib.BlockCipher = Cipher.extend({ /** * Configuration options. * * @property {Mode} mode The block mode to use. Default: CBC * @property {Padding} padding The padding strategy to use. Default: Pkcs7 */ cfg: Cipher.cfg.extend({ mode: CBC, padding: Pkcs7 }), reset: function () { // Reset cipher Cipher.reset.call(this); // Shortcuts var cfg = this.cfg; var iv = cfg.iv; var mode = cfg.mode; // Reset block mode if (this._xformMode == this._ENC_XFORM_MODE) { var modeCreator = mode.createEncryptor; } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { var modeCreator = mode.createDecryptor; // Keep at least one block in the buffer for unpadding this._minBufferSize = 1; } this._mode = modeCreator.call(mode, this, iv && iv.words); }, _doProcessBlock: function (words, offset) { this._mode.processBlock(words, offset); }, _doFinalize: function () { // Shortcut var padding = this.cfg.padding; // Finalize if (this._xformMode == this._ENC_XFORM_MODE) { // Pad data padding.pad(this._data, this.blockSize); // Process final blocks var finalProcessedBlocks = this._process(!!'flush'); } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { // Process final blocks var finalProcessedBlocks = this._process(!!'flush'); // Unpad data padding.unpad(finalProcessedBlocks); } return finalProcessedBlocks; }, blockSize: 128/32 }); /** * A collection of cipher parameters. * * @property {WordArray} ciphertext The raw ciphertext. * @property {WordArray} key The key to this ciphertext. * @property {WordArray} iv The IV used in the ciphering operation. * @property {WordArray} salt The salt used with a key derivation function. * @property {Cipher} algorithm The cipher algorithm. * @property {Mode} mode The block mode used in the ciphering operation. * @property {Padding} padding The padding scheme used in the ciphering operation. * @property {number} blockSize The block size of the cipher. * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string. */ var CipherParams = C_lib.CipherParams = Base.extend({ /** * Initializes a newly created cipher params object. * * @param {Object} cipherParams An object with any of the possible cipher parameters. * * @example * * var cipherParams = CryptoJS.lib.CipherParams.create({ * ciphertext: ciphertextWordArray, * key: keyWordArray, * iv: ivWordArray, * salt: saltWordArray, * algorithm: CryptoJS.algo.AES, * mode: CryptoJS.mode.CBC, * padding: CryptoJS.pad.PKCS7, * blockSize: 4, * formatter: CryptoJS.format.OpenSSL * }); */ init: function (cipherParams) { this.mixIn(cipherParams); }, /** * Converts this cipher params object to a string. * * @param {Format} formatter (Optional) The formatting strategy to use. * * @return {string} The stringified cipher params. * * @throws Error If neither the formatter nor the default formatter is set. * * @example * * var string = cipherParams + ''; * var string = cipherParams.toString(); * var string = cipherParams.toString(CryptoJS.format.OpenSSL); */ toString: function (formatter) { return (formatter || this.formatter).stringify(this); } }); /** * Format namespace. */ var C_format = C.format = {}; /** * OpenSSL formatting strategy. */ var OpenSSLFormatter = C_format.OpenSSL = { /** * Converts a cipher params object to an OpenSSL-compatible string. * * @param {CipherParams} cipherParams The cipher params object. * * @return {string} The OpenSSL-compatible string. * * @static * * @example * * var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams); */ stringify: function (cipherParams) { // Shortcuts var ciphertext = cipherParams.ciphertext; var salt = cipherParams.salt; // Format if (salt) { var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext); } else { var wordArray = ciphertext; } return wordArray.toString(Base64); }, /** * Converts an OpenSSL-compatible string to a cipher params object. * * @param {string} openSSLStr The OpenSSL-compatible string. * * @return {CipherParams} The cipher params object. * * @static * * @example * * var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString); */ parse: function (openSSLStr) { // Parse base64 var ciphertext = Base64.parse(openSSLStr); // Shortcut var ciphertextWords = ciphertext.words; // Test for salt if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) { // Extract salt var salt = WordArray.create(ciphertextWords.slice(2, 4)); // Remove salt from ciphertext ciphertextWords.splice(0, 4); ciphertext.sigBytes -= 16; } return CipherParams.create({ ciphertext: ciphertext, salt: salt }); } }; /** * A cipher wrapper that returns ciphertext as a serializable cipher params object. */ var SerializableCipher = C_lib.SerializableCipher = Base.extend({ /** * Configuration options. * * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL */ cfg: Base.extend({ format: OpenSSLFormatter }), /** * Encrypts a message. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv }); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Encrypt var encryptor = cipher.createEncryptor(key, cfg); var ciphertext = encryptor.finalize(message); // Shortcut var cipherCfg = encryptor.cfg; // Create and return serializable cipher params return CipherParams.create({ ciphertext: ciphertext, key: key, iv: cipherCfg.iv, algorithm: cipher, mode: cipherCfg.mode, padding: cipherCfg.padding, blockSize: cipher.blockSize, formatter: cfg.format }); }, /** * Decrypts serialized ciphertext. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Decrypt var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext); return plaintext; }, /** * Converts serialized ciphertext to CipherParams, * else assumed CipherParams already and returns ciphertext unchanged. * * @param {CipherParams|string} ciphertext The ciphertext. * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext. * * @return {CipherParams} The unserialized ciphertext. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format); */ _parse: function (ciphertext, format) { if (typeof ciphertext == 'string') { return format.parse(ciphertext, this); } else { return ciphertext; } } }); /** * Key derivation function namespace. */ var C_kdf = C.kdf = {}; /** * OpenSSL key derivation function. */ var OpenSSLKdf = C_kdf.OpenSSL = { /** * Derives a key and IV from a password. * * @param {string} password The password to derive from. * @param {number} keySize The size in words of the key to generate. * @param {number} ivSize The size in words of the IV to generate. * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly. * * @return {CipherParams} A cipher params object with the key, IV, and salt. * * @static * * @example * * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32); * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt'); */ execute: function (password, keySize, ivSize, salt) { // Generate random salt if (!salt) { salt = WordArray.random(64/8); } // Derive key and IV var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt); // Separate key and IV var iv = WordArray.create(key.words.slice(keySize), ivSize * 4); key.sigBytes = keySize * 4; // Return params return CipherParams.create({ key: key, iv: iv, salt: salt }); } }; /** * A serializable cipher wrapper that derives the key from a password, * and returns ciphertext as a serializable cipher params object. */ var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({ /** * Configuration options. * * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL */ cfg: SerializableCipher.cfg.extend({ kdf: OpenSSLKdf }), /** * Encrypts a message using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password'); * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize); // Add IV to config cfg.iv = derivedParams.iv; // Encrypt var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg); // Mix in derived params ciphertext.mixIn(derivedParams); return ciphertext; }, /** * Decrypts serialized ciphertext using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt); // Add IV to config cfg.iv = derivedParams.iv; // Decrypt var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg); return plaintext; } }); }()); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var BlockCipher = C_lib.BlockCipher; var C_algo = C.algo; // Lookup tables var SBOX = []; var INV_SBOX = []; var SUB_MIX_0 = []; var SUB_MIX_1 = []; var SUB_MIX_2 = []; var SUB_MIX_3 = []; var INV_SUB_MIX_0 = []; var INV_SUB_MIX_1 = []; var INV_SUB_MIX_2 = []; var INV_SUB_MIX_3 = []; // Compute lookup tables (function () { // Compute double table var d = []; for (var i = 0; i < 256; i++) { if (i < 128) { d[i] = i << 1; } else { d[i] = (i << 1) ^ 0x11b; } } // Walk GF(2^8) var x = 0; var xi = 0; for (var i = 0; i < 256; i++) { // Compute sbox var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4); sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63; SBOX[x] = sx; INV_SBOX[sx] = x; // Compute multiplication var x2 = d[x]; var x4 = d[x2]; var x8 = d[x4]; // Compute sub bytes, mix columns tables var t = (d[sx] * 0x101) ^ (sx * 0x1010100); SUB_MIX_0[x] = (t << 24) | (t >>> 8); SUB_MIX_1[x] = (t << 16) | (t >>> 16); SUB_MIX_2[x] = (t << 8) | (t >>> 24); SUB_MIX_3[x] = t; // Compute inv sub bytes, inv mix columns tables var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100); INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8); INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16); INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24); INV_SUB_MIX_3[sx] = t; // Compute next counter if (!x) { x = xi = 1; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } }()); // Precomputed Rcon lookup var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]; /** * AES block cipher algorithm. */ var AES = C_algo.AES = BlockCipher.extend({ _doReset: function () { // Shortcuts var key = this._key; var keyWords = key.words; var keySize = key.sigBytes / 4; // Compute number of rounds var nRounds = this._nRounds = keySize + 6 // Compute number of key schedule rows var ksRows = (nRounds + 1) * 4; // Compute key schedule var keySchedule = this._keySchedule = []; for (var ksRow = 0; ksRow < ksRows; ksRow++) { if (ksRow < keySize) { keySchedule[ksRow] = keyWords[ksRow]; } else { var t = keySchedule[ksRow - 1]; if (!(ksRow % keySize)) { // Rot word t = (t << 8) | (t >>> 24); // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; // Mix Rcon t ^= RCON[(ksRow / keySize) | 0] << 24; } else if (keySize > 6 && ksRow % keySize == 4) { // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; } keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t; } } // Compute inv key schedule var invKeySchedule = this._invKeySchedule = []; for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) { var ksRow = ksRows - invKsRow; if (invKsRow % 4) { var t = keySchedule[ksRow]; } else { var t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^ INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]]; } } }, encryptBlock: function (M, offset) { this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX); }, decryptBlock: function (M, offset) { // Swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX); // Inv swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; }, _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) { // Shortcut var nRounds = this._nRounds; // Get input, add round key var s0 = M[offset] ^ keySchedule[0]; var s1 = M[offset + 1] ^ keySchedule[1]; var s2 = M[offset + 2] ^ keySchedule[2]; var s3 = M[offset + 3] ^ keySchedule[3]; // Key schedule row counter var ksRow = 4; // Rounds for (var round = 1; round < nRounds; round++) { // Shift rows, sub bytes, mix columns, add round key var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++]; var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++]; var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++]; var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++]; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; } // Shift rows, sub bytes, add round key var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++]; var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++]; var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++]; var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++]; // Set output M[offset] = t0; M[offset + 1] = t1; M[offset + 2] = t2; M[offset + 3] = t3; }, keySize: 256/32 }); /** * Shortcut functions to the cipher's object interface. * * @example * * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg); * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg); */ C.AES = BlockCipher._createHelper(AES); }()); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Reusable object var W = []; /** * SHA-1 hash algorithm. */ var SHA1 = C_algo.SHA1 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init([ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ]); }, _doProcessBlock: function (M, offset) { // Shortcut var H = this._hash.words; // Working variables var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; // Computation for (var i = 0; i < 80; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; W[i] = (n << 1) | (n >>> 31); } var t = ((a << 5) | (a >>> 27)) + e + W[i]; if (i < 20) { t += ((b & c) | (~b & d)) + 0x5a827999; } else if (i < 40) { t += (b ^ c ^ d) + 0x6ed9eba1; } else if (i < 60) { t += ((b & c) | (b & d) | (c & d)) - 0x70e44324; } else /* if (i < 80) */ { t += (b ^ c ^ d) - 0x359d3e2a; } e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t; } // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; H[4] = (H[4] + e) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; // Hash final blocks this._process(); // Return final computed hash return this._hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.SHA1('message'); * var hash = CryptoJS.SHA1(wordArray); */ C.SHA1 = Hasher._createHelper(SHA1); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacSHA1(message, key); */ C.HmacSHA1 = Hasher._createHmacHelper(SHA1); }()); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function (Math) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Initialization and round constants tables var H = []; var K = []; // Compute constants (function () { function isPrime(n) { var sqrtN = Math.sqrt(n); for (var factor = 2; factor <= sqrtN; factor++) { if (!(n % factor)) { return false; } } return true; } function getFractionalBits(n) { return ((n - (n | 0)) * 0x100000000) | 0; } var n = 2; var nPrime = 0; while (nPrime < 64) { if (isPrime(n)) { if (nPrime < 8) { H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2)); } K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3)); nPrime++; } n++; } }()); // Reusable object var W = []; /** * SHA-256 hash algorithm. */ var SHA256 = C_algo.SHA256 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init(H.slice(0)); }, _doProcessBlock: function (M, offset) { // Shortcut var H = this._hash.words; // Working variables var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; var f = H[5]; var g = H[6]; var h = H[7]; // Computation for (var i = 0; i < 64; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var gamma0x = W[i - 15]; var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^ ((gamma0x << 14) | (gamma0x >>> 18)) ^ (gamma0x >>> 3); var gamma1x = W[i - 2]; var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^ ((gamma1x << 13) | (gamma1x >>> 19)) ^ (gamma1x >>> 10); W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]; } var ch = (e & f) ^ (~e & g); var maj = (a & b) ^ (a & c) ^ (b & c); var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22)); var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25)); var t1 = h + sigma1 + ch + K[i] + W[i]; var t2 = sigma0 + maj; h = g; g = f; f = e; e = (d + t1) | 0; d = c; c = b; b = a; a = (t1 + t2) | 0; } // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; H[4] = (H[4] + e) | 0; H[5] = (H[5] + f) | 0; H[6] = (H[6] + g) | 0; H[7] = (H[7] + h) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; // Hash final blocks this._process(); // Return final computed hash return this._hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.SHA256('message'); * var hash = CryptoJS.SHA256(wordArray); */ C.SHA256 = Hasher._createHelper(SHA256); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacSHA256(message, key); */ C.HmacSHA256 = Hasher._createHmacHelper(SHA256); }(Math)); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var C_algo = C.algo; /** * HMAC algorithm. */ var HMAC = C_algo.HMAC = Base.extend({ /** * Initializes a newly created HMAC. * * @param {Hasher} hasher The hash algorithm to use. * @param {WordArray|string} key The secret key. * * @example * * var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key); */ init: function (hasher, key) { // Init hasher hasher = this._hasher = new hasher.init(); // Convert string to WordArray, else assume WordArray already if (typeof key == 'string') { key = Utf8.parse(key); } // Shortcuts var hasherBlockSize = hasher.blockSize; var hasherBlockSizeBytes = hasherBlockSize * 4; // Allow arbitrary length keys if (key.sigBytes > hasherBlockSizeBytes) { key = hasher.finalize(key); } // Clamp excess bits key.clamp(); // Clone key for inner and outer pads var oKey = this._oKey = key.clone(); var iKey = this._iKey = key.clone(); // Shortcuts var oKeyWords = oKey.words; var iKeyWords = iKey.words; // XOR keys with pad constants for (var i = 0; i < hasherBlockSize; i++) { oKeyWords[i] ^= 0x5c5c5c5c; iKeyWords[i] ^= 0x36363636; } oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes; // Set initial values this.reset(); }, /** * Resets this HMAC to its initial state. * * @example * * hmacHasher.reset(); */ reset: function () { // Shortcut var hasher = this._hasher; // Reset hasher.reset(); hasher.update(this._iKey); }, /** * Updates this HMAC with a message. * * @param {WordArray|string} messageUpdate The message to append. * * @return {HMAC} This HMAC instance. * * @example * * hmacHasher.update('message'); * hmacHasher.update(wordArray); */ update: function (messageUpdate) { this._hasher.update(messageUpdate); // Chainable return this; }, /** * Finalizes the HMAC computation. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} messageUpdate (Optional) A final message update. * * @return {WordArray} The HMAC. * * @example * * var hmac = hmacHasher.finalize(); * var hmac = hmacHasher.finalize('message'); * var hmac = hmacHasher.finalize(wordArray); */ finalize: function (messageUpdate) { // Shortcut var hasher = this._hasher; // Compute HMAC var innerHash = hasher.finalize(messageUpdate); hasher.reset(); var hmac = hasher.finalize(this._oKey.clone().concat(innerHash)); return hmac; } }); }()); /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** * A noop padding strategy. */ CryptoJS.pad.NoPadding = { pad: function () { }, unpad: function () { } }; /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wiki/License */ /** * Counter block mode. */ CryptoJS.mode.CTR = (function () { var CTR = CryptoJS.lib.BlockCipherMode.extend(); var Encryptor = CTR.Encryptor = CTR.extend({ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher var blockSize = cipher.blockSize; var iv = this._iv; var counter = this._counter; // Generate keystream if (iv) { counter = this._counter = iv.slice(0); // Remove IV for subsequent blocks this._iv = undefined; } var keystream = counter.slice(0); cipher.encryptBlock(keystream, 0); // Increment counter counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0 // Encrypt for (var i = 0; i < blockSize; i++) { words[offset + i] ^= keystream[i]; } } }); CTR.Decryptor = Encryptor; return CTR; }()); return CryptoJS }))