view scripts/minifier/otr/dep/crypto.js @ 103:e69883c1ec30

docker (libervia_cont): added a "status" command: - if libervia container is not running, it exits with error code 1 - if libervia container is running but no server is launched, it exits with error code 2 - if libervia container is running and server is launcher, it exits with error code 0 (success) server detection is done by doing a simple grep on logs, that's not perfectly reliable (ports can be changed in configuration, even if that doesn't really make sense in Docker context) but should be good enough for this purpose.
author Goffi <goffi@goffi.org>
date Sat, 27 Feb 2016 00:45:40 +0100
parents 1596660ddf72
children
line wrap: on
line source

;(function (root, factory) {

  if (typeof define === "function" && define.amd) {
    define(factory)
  } else if (typeof module !== 'undefined' && module.exports) {
    module.exports = factory()
  } else {
    root.CryptoJS = factory()
  }

}(this, function () {

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * CryptoJS core components.
 */
var CryptoJS = CryptoJS || (function (Math, undefined) {
    /**
     * CryptoJS namespace.
     */
    var C = {};

    /**
     * Library namespace.
     */
    var C_lib = C.lib = {};

    /**
     * Base object for prototypal inheritance.
     */
    var Base = C_lib.Base = (function () {
        function F() {}

        return {
            /**
             * Creates a new object that inherits from this object.
             *
             * @param {Object} overrides Properties to copy into the new object.
             *
             * @return {Object} The new object.
             *
             * @static
             *
             * @example
             *
             *     var MyType = CryptoJS.lib.Base.extend({
             *         field: 'value',
             *
             *         method: function () {
             *         }
             *     });
             */
            extend: function (overrides) {
                // Spawn
                F.prototype = this;
                var subtype = new F();

                // Augment
                if (overrides) {
                    subtype.mixIn(overrides);
                }

                // Create default initializer
                if (!subtype.hasOwnProperty('init')) {
                    subtype.init = function () {
                        subtype.$super.init.apply(this, arguments);
                    };
                }

                // Initializer's prototype is the subtype object
                subtype.init.prototype = subtype;

                // Reference supertype
                subtype.$super = this;

                return subtype;
            },

            /**
             * Extends this object and runs the init method.
             * Arguments to create() will be passed to init().
             *
             * @return {Object} The new object.
             *
             * @static
             *
             * @example
             *
             *     var instance = MyType.create();
             */
            create: function () {
                var instance = this.extend();
                instance.init.apply(instance, arguments);

                return instance;
            },

            /**
             * Initializes a newly created object.
             * Override this method to add some logic when your objects are created.
             *
             * @example
             *
             *     var MyType = CryptoJS.lib.Base.extend({
             *         init: function () {
             *             // ...
             *         }
             *     });
             */
            init: function () {
            },

            /**
             * Copies properties into this object.
             *
             * @param {Object} properties The properties to mix in.
             *
             * @example
             *
             *     MyType.mixIn({
             *         field: 'value'
             *     });
             */
            mixIn: function (properties) {
                for (var propertyName in properties) {
                    if (properties.hasOwnProperty(propertyName)) {
                        this[propertyName] = properties[propertyName];
                    }
                }

                // IE won't copy toString using the loop above
                if (properties.hasOwnProperty('toString')) {
                    this.toString = properties.toString;
                }
            },

            /**
             * Creates a copy of this object.
             *
             * @return {Object} The clone.
             *
             * @example
             *
             *     var clone = instance.clone();
             */
            clone: function () {
                return this.init.prototype.extend(this);
            }
        };
    }());

    /**
     * An array of 32-bit words.
     *
     * @property {Array} words The array of 32-bit words.
     * @property {number} sigBytes The number of significant bytes in this word array.
     */
    var WordArray = C_lib.WordArray = Base.extend({
        /**
         * Initializes a newly created word array.
         *
         * @param {Array} words (Optional) An array of 32-bit words.
         * @param {number} sigBytes (Optional) The number of significant bytes in the words.
         *
         * @example
         *
         *     var wordArray = CryptoJS.lib.WordArray.create();
         *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
         *     var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
         */
        init: function (words, sigBytes) {
            words = this.words = words || [];

            if (sigBytes != undefined) {
                this.sigBytes = sigBytes;
            } else {
                this.sigBytes = words.length * 4;
            }
        },

        /**
         * Converts this word array to a string.
         *
         * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
         *
         * @return {string} The stringified word array.
         *
         * @example
         *
         *     var string = wordArray + '';
         *     var string = wordArray.toString();
         *     var string = wordArray.toString(CryptoJS.enc.Utf8);
         */
        toString: function (encoder) {
            return (encoder || Hex).stringify(this);
        },

        /**
         * Concatenates a word array to this word array.
         *
         * @param {WordArray} wordArray The word array to append.
         *
         * @return {WordArray} This word array.
         *
         * @example
         *
         *     wordArray1.concat(wordArray2);
         */
        concat: function (wordArray) {
            // Shortcuts
            var thisWords = this.words;
            var thatWords = wordArray.words;
            var thisSigBytes = this.sigBytes;
            var thatSigBytes = wordArray.sigBytes;

            // Clamp excess bits
            this.clamp();

            // Concat
            if (thisSigBytes % 4) {
                // Copy one byte at a time
                for (var i = 0; i < thatSigBytes; i++) {
                    var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                    thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
                }
            } else if (thatWords.length > 0xffff) {
                // Copy one word at a time
                for (var i = 0; i < thatSigBytes; i += 4) {
                    thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
                }
            } else {
                // Copy all words at once
                thisWords.push.apply(thisWords, thatWords);
            }
            this.sigBytes += thatSigBytes;

            // Chainable
            return this;
        },

        /**
         * Removes insignificant bits.
         *
         * @example
         *
         *     wordArray.clamp();
         */
        clamp: function () {
            // Shortcuts
            var words = this.words;
            var sigBytes = this.sigBytes;

            // Clamp
            words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
            words.length = Math.ceil(sigBytes / 4);
        },

        /**
         * Creates a copy of this word array.
         *
         * @return {WordArray} The clone.
         *
         * @example
         *
         *     var clone = wordArray.clone();
         */
        clone: function () {
            var clone = Base.clone.call(this);
            clone.words = this.words.slice(0);

            return clone;
        },

        /**
         * Creates a word array filled with random bytes.
         *
         * @param {number} nBytes The number of random bytes to generate.
         *
         * @return {WordArray} The random word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.lib.WordArray.random(16);
         */
        random: function (nBytes) {
            var words = [];
            for (var i = 0; i < nBytes; i += 4) {
                words.push((Math.random() * 0x100000000) | 0);
            }

            return new WordArray.init(words, nBytes);
        }
    });

    /**
     * Encoder namespace.
     */
    var C_enc = C.enc = {};

    /**
     * Hex encoding strategy.
     */
    var Hex = C_enc.Hex = {
        /**
         * Converts a word array to a hex string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The hex string.
         *
         * @static
         *
         * @example
         *
         *     var hexString = CryptoJS.enc.Hex.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;

            // Convert
            var hexChars = [];
            for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                hexChars.push((bite >>> 4).toString(16));
                hexChars.push((bite & 0x0f).toString(16));
            }

            return hexChars.join('');
        },

        /**
         * Converts a hex string to a word array.
         *
         * @param {string} hexStr The hex string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Hex.parse(hexString);
         */
        parse: function (hexStr) {
            // Shortcut
            var hexStrLength = hexStr.length;

            // Convert
            var words = [];
            for (var i = 0; i < hexStrLength; i += 2) {
                words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
            }

            return new WordArray.init(words, hexStrLength / 2);
        }
    };

    /**
     * Latin1 encoding strategy.
     */
    var Latin1 = C_enc.Latin1 = {
        /**
         * Converts a word array to a Latin1 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The Latin1 string.
         *
         * @static
         *
         * @example
         *
         *     var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;

            // Convert
            var latin1Chars = [];
            for (var i = 0; i < sigBytes; i++) {
                var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
                latin1Chars.push(String.fromCharCode(bite));
            }

            return latin1Chars.join('');
        },

        /**
         * Converts a Latin1 string to a word array.
         *
         * @param {string} latin1Str The Latin1 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
         */
        parse: function (latin1Str) {
            // Shortcut
            var latin1StrLength = latin1Str.length;

            // Convert
            var words = [];
            for (var i = 0; i < latin1StrLength; i++) {
                words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
            }

            return new WordArray.init(words, latin1StrLength);
        }
    };

    /**
     * UTF-8 encoding strategy.
     */
    var Utf8 = C_enc.Utf8 = {
        /**
         * Converts a word array to a UTF-8 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The UTF-8 string.
         *
         * @static
         *
         * @example
         *
         *     var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
         */
        stringify: function (wordArray) {
            try {
                return decodeURIComponent(escape(Latin1.stringify(wordArray)));
            } catch (e) {
                throw new Error('Malformed UTF-8 data');
            }
        },

        /**
         * Converts a UTF-8 string to a word array.
         *
         * @param {string} utf8Str The UTF-8 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
         */
        parse: function (utf8Str) {
            return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
        }
    };

    /**
     * Abstract buffered block algorithm template.
     *
     * The property blockSize must be implemented in a concrete subtype.
     *
     * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
     */
    var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
        /**
         * Resets this block algorithm's data buffer to its initial state.
         *
         * @example
         *
         *     bufferedBlockAlgorithm.reset();
         */
        reset: function () {
            // Initial values
            this._data = new WordArray.init();
            this._nDataBytes = 0;
        },

        /**
         * Adds new data to this block algorithm's buffer.
         *
         * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
         *
         * @example
         *
         *     bufferedBlockAlgorithm._append('data');
         *     bufferedBlockAlgorithm._append(wordArray);
         */
        _append: function (data) {
            // Convert string to WordArray, else assume WordArray already
            if (typeof data == 'string') {
                data = Utf8.parse(data);
            }

            // Append
            this._data.concat(data);
            this._nDataBytes += data.sigBytes;
        },

        /**
         * Processes available data blocks.
         *
         * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
         *
         * @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
         *
         * @return {WordArray} The processed data.
         *
         * @example
         *
         *     var processedData = bufferedBlockAlgorithm._process();
         *     var processedData = bufferedBlockAlgorithm._process(!!'flush');
         */
        _process: function (doFlush) {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;
            var dataSigBytes = data.sigBytes;
            var blockSize = this.blockSize;
            var blockSizeBytes = blockSize * 4;

            // Count blocks ready
            var nBlocksReady = dataSigBytes / blockSizeBytes;
            if (doFlush) {
                // Round up to include partial blocks
                nBlocksReady = Math.ceil(nBlocksReady);
            } else {
                // Round down to include only full blocks,
                // less the number of blocks that must remain in the buffer
                nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
            }

            // Count words ready
            var nWordsReady = nBlocksReady * blockSize;

            // Count bytes ready
            var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);

            // Process blocks
            if (nWordsReady) {
                for (var offset = 0; offset < nWordsReady; offset += blockSize) {
                    // Perform concrete-algorithm logic
                    this._doProcessBlock(dataWords, offset);
                }

                // Remove processed words
                var processedWords = dataWords.splice(0, nWordsReady);
                data.sigBytes -= nBytesReady;
            }

            // Return processed words
            return new WordArray.init(processedWords, nBytesReady);
        },

        /**
         * Creates a copy of this object.
         *
         * @return {Object} The clone.
         *
         * @example
         *
         *     var clone = bufferedBlockAlgorithm.clone();
         */
        clone: function () {
            var clone = Base.clone.call(this);
            clone._data = this._data.clone();

            return clone;
        },

        _minBufferSize: 0
    });

    /**
     * Abstract hasher template.
     *
     * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
     */
    var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
        /**
         * Configuration options.
         */
        cfg: Base.extend(),

        /**
         * Initializes a newly created hasher.
         *
         * @param {Object} cfg (Optional) The configuration options to use for this hash computation.
         *
         * @example
         *
         *     var hasher = CryptoJS.algo.SHA256.create();
         */
        init: function (cfg) {
            // Apply config defaults
            this.cfg = this.cfg.extend(cfg);

            // Set initial values
            this.reset();
        },

        /**
         * Resets this hasher to its initial state.
         *
         * @example
         *
         *     hasher.reset();
         */
        reset: function () {
            // Reset data buffer
            BufferedBlockAlgorithm.reset.call(this);

            // Perform concrete-hasher logic
            this._doReset();
        },

        /**
         * Updates this hasher with a message.
         *
         * @param {WordArray|string} messageUpdate The message to append.
         *
         * @return {Hasher} This hasher.
         *
         * @example
         *
         *     hasher.update('message');
         *     hasher.update(wordArray);
         */
        update: function (messageUpdate) {
            // Append
            this._append(messageUpdate);

            // Update the hash
            this._process();

            // Chainable
            return this;
        },

        /**
         * Finalizes the hash computation.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} messageUpdate (Optional) A final message update.
         *
         * @return {WordArray} The hash.
         *
         * @example
         *
         *     var hash = hasher.finalize();
         *     var hash = hasher.finalize('message');
         *     var hash = hasher.finalize(wordArray);
         */
        finalize: function (messageUpdate) {
            // Final message update
            if (messageUpdate) {
                this._append(messageUpdate);
            }

            // Perform concrete-hasher logic
            var hash = this._doFinalize();

            return hash;
        },

        blockSize: 512/32,

        /**
         * Creates a shortcut function to a hasher's object interface.
         *
         * @param {Hasher} hasher The hasher to create a helper for.
         *
         * @return {Function} The shortcut function.
         *
         * @static
         *
         * @example
         *
         *     var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
         */
        _createHelper: function (hasher) {
            return function (message, cfg) {
                return new hasher.init(cfg).finalize(message);
            };
        },

        /**
         * Creates a shortcut function to the HMAC's object interface.
         *
         * @param {Hasher} hasher The hasher to use in this HMAC helper.
         *
         * @return {Function} The shortcut function.
         *
         * @static
         *
         * @example
         *
         *     var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
         */
        _createHmacHelper: function (hasher) {
            return function (message, key) {
                return new C_algo.HMAC.init(hasher, key).finalize(message);
            };
        }
    });

    /**
     * Algorithm namespace.
     */
    var C_algo = C.algo = {};

    return C;
}(Math));

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var C_enc = C.enc;

    /**
     * Base64 encoding strategy.
     */
    var Base64 = C_enc.Base64 = {
        /**
         * Converts a word array to a Base64 string.
         *
         * @param {WordArray} wordArray The word array.
         *
         * @return {string} The Base64 string.
         *
         * @static
         *
         * @example
         *
         *     var base64String = CryptoJS.enc.Base64.stringify(wordArray);
         */
        stringify: function (wordArray) {
            // Shortcuts
            var words = wordArray.words;
            var sigBytes = wordArray.sigBytes;
            var map = this._map;

            // Clamp excess bits
            wordArray.clamp();

            // Convert
            var base64Chars = [];
            for (var i = 0; i < sigBytes; i += 3) {
                var byte1 = (words[i >>> 2]       >>> (24 - (i % 4) * 8))       & 0xff;
                var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
                var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;

                var triplet = (byte1 << 16) | (byte2 << 8) | byte3;

                for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
                    base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
                }
            }

            // Add padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
                while (base64Chars.length % 4) {
                    base64Chars.push(paddingChar);
                }
            }

            return base64Chars.join('');
        },

        /**
         * Converts a Base64 string to a word array.
         *
         * @param {string} base64Str The Base64 string.
         *
         * @return {WordArray} The word array.
         *
         * @static
         *
         * @example
         *
         *     var wordArray = CryptoJS.enc.Base64.parse(base64String);
         */
        parse: function (base64Str) {
            // Shortcuts
            var base64StrLength = base64Str.length;
            var map = this._map;

            // Ignore padding
            var paddingChar = map.charAt(64);
            if (paddingChar) {
                var paddingIndex = base64Str.indexOf(paddingChar);
                if (paddingIndex != -1) {
                    base64StrLength = paddingIndex;
                }
            }

            // Convert
            var words = [];
            var nBytes = 0;
            for (var i = 0; i < base64StrLength; i++) {
                if (i % 4) {
                    var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
                    var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
                    words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
                    nBytes++;
                }
            }

            return WordArray.create(words, nBytes);
        },

        _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
    };
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * Cipher core components.
 */
CryptoJS.lib.Cipher || (function (undefined) {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var Base = C_lib.Base;
    var WordArray = C_lib.WordArray;
    var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
    var C_enc = C.enc;
    var Utf8 = C_enc.Utf8;
    var Base64 = C_enc.Base64;
    var C_algo = C.algo;
    var EvpKDF = C_algo.EvpKDF;

    /**
     * Abstract base cipher template.
     *
     * @property {number} keySize This cipher's key size. Default: 4 (128 bits)
     * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
     * @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
     * @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
     */
    var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
        /**
         * Configuration options.
         *
         * @property {WordArray} iv The IV to use for this operation.
         */
        cfg: Base.extend(),

        /**
         * Creates this cipher in encryption mode.
         *
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {Cipher} A cipher instance.
         *
         * @static
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
         */
        createEncryptor: function (key, cfg) {
            return this.create(this._ENC_XFORM_MODE, key, cfg);
        },

        /**
         * Creates this cipher in decryption mode.
         *
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {Cipher} A cipher instance.
         *
         * @static
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
         */
        createDecryptor: function (key, cfg) {
            return this.create(this._DEC_XFORM_MODE, key, cfg);
        },

        /**
         * Initializes a newly created cipher.
         *
         * @param {number} xformMode Either the encryption or decryption transormation mode constant.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @example
         *
         *     var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
         */
        init: function (xformMode, key, cfg) {
            // Apply config defaults
            this.cfg = this.cfg.extend(cfg);

            // Store transform mode and key
            this._xformMode = xformMode;
            this._key = key;

            // Set initial values
            this.reset();
        },

        /**
         * Resets this cipher to its initial state.
         *
         * @example
         *
         *     cipher.reset();
         */
        reset: function () {
            // Reset data buffer
            BufferedBlockAlgorithm.reset.call(this);

            // Perform concrete-cipher logic
            this._doReset();
        },

        /**
         * Adds data to be encrypted or decrypted.
         *
         * @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
         *
         * @return {WordArray} The data after processing.
         *
         * @example
         *
         *     var encrypted = cipher.process('data');
         *     var encrypted = cipher.process(wordArray);
         */
        process: function (dataUpdate) {
            // Append
            this._append(dataUpdate);

            // Process available blocks
            return this._process();
        },

        /**
         * Finalizes the encryption or decryption process.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
         *
         * @return {WordArray} The data after final processing.
         *
         * @example
         *
         *     var encrypted = cipher.finalize();
         *     var encrypted = cipher.finalize('data');
         *     var encrypted = cipher.finalize(wordArray);
         */
        finalize: function (dataUpdate) {
            // Final data update
            if (dataUpdate) {
                this._append(dataUpdate);
            }

            // Perform concrete-cipher logic
            var finalProcessedData = this._doFinalize();

            return finalProcessedData;
        },

        keySize: 128/32,

        ivSize: 128/32,

        _ENC_XFORM_MODE: 1,

        _DEC_XFORM_MODE: 2,

        /**
         * Creates shortcut functions to a cipher's object interface.
         *
         * @param {Cipher} cipher The cipher to create a helper for.
         *
         * @return {Object} An object with encrypt and decrypt shortcut functions.
         *
         * @static
         *
         * @example
         *
         *     var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
         */
        _createHelper: (function () {
            function selectCipherStrategy(key) {
                if (typeof key == 'string') {
                    return PasswordBasedCipher;
                } else {
                    return SerializableCipher;
                }
            }

            return function (cipher) {
                return {
                    encrypt: function (message, key, cfg) {
                        return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
                    },

                    decrypt: function (ciphertext, key, cfg) {
                        return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
                    }
                };
            };
        }())
    });

    /**
     * Abstract base stream cipher template.
     *
     * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
     */
    var StreamCipher = C_lib.StreamCipher = Cipher.extend({
        _doFinalize: function () {
            // Process partial blocks
            var finalProcessedBlocks = this._process(!!'flush');

            return finalProcessedBlocks;
        },

        blockSize: 1
    });

    /**
     * Mode namespace.
     */
    var C_mode = C.mode = {};

    /**
     * Abstract base block cipher mode template.
     */
    var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
        /**
         * Creates this mode for encryption.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @static
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
         */
        createEncryptor: function (cipher, iv) {
            return this.Encryptor.create(cipher, iv);
        },

        /**
         * Creates this mode for decryption.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @static
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
         */
        createDecryptor: function (cipher, iv) {
            return this.Decryptor.create(cipher, iv);
        },

        /**
         * Initializes a newly created mode.
         *
         * @param {Cipher} cipher A block cipher instance.
         * @param {Array} iv The IV words.
         *
         * @example
         *
         *     var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
         */
        init: function (cipher, iv) {
            this._cipher = cipher;
            this._iv = iv;
        }
    });

    /**
     * Cipher Block Chaining mode.
     */
    var CBC = C_mode.CBC = (function () {
        /**
         * Abstract base CBC mode.
         */
        var CBC = BlockCipherMode.extend();

        /**
         * CBC encryptor.
         */
        CBC.Encryptor = CBC.extend({
            /**
             * Processes the data block at offset.
             *
             * @param {Array} words The data words to operate on.
             * @param {number} offset The offset where the block starts.
             *
             * @example
             *
             *     mode.processBlock(data.words, offset);
             */
            processBlock: function (words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;

                // XOR and encrypt
                xorBlock.call(this, words, offset, blockSize);
                cipher.encryptBlock(words, offset);

                // Remember this block to use with next block
                this._prevBlock = words.slice(offset, offset + blockSize);
            }
        });

        /**
         * CBC decryptor.
         */
        CBC.Decryptor = CBC.extend({
            /**
             * Processes the data block at offset.
             *
             * @param {Array} words The data words to operate on.
             * @param {number} offset The offset where the block starts.
             *
             * @example
             *
             *     mode.processBlock(data.words, offset);
             */
            processBlock: function (words, offset) {
                // Shortcuts
                var cipher = this._cipher;
                var blockSize = cipher.blockSize;

                // Remember this block to use with next block
                var thisBlock = words.slice(offset, offset + blockSize);

                // Decrypt and XOR
                cipher.decryptBlock(words, offset);
                xorBlock.call(this, words, offset, blockSize);

                // This block becomes the previous block
                this._prevBlock = thisBlock;
            }
        });

        function xorBlock(words, offset, blockSize) {
            // Shortcut
            var iv = this._iv;

            // Choose mixing block
            if (iv) {
                var block = iv;

                // Remove IV for subsequent blocks
                this._iv = undefined;
            } else {
                var block = this._prevBlock;
            }

            // XOR blocks
            for (var i = 0; i < blockSize; i++) {
                words[offset + i] ^= block[i];
            }
        }

        return CBC;
    }());

    /**
     * Padding namespace.
     */
    var C_pad = C.pad = {};

    /**
     * PKCS #5/7 padding strategy.
     */
    var Pkcs7 = C_pad.Pkcs7 = {
        /**
         * Pads data using the algorithm defined in PKCS #5/7.
         *
         * @param {WordArray} data The data to pad.
         * @param {number} blockSize The multiple that the data should be padded to.
         *
         * @static
         *
         * @example
         *
         *     CryptoJS.pad.Pkcs7.pad(wordArray, 4);
         */
        pad: function (data, blockSize) {
            // Shortcut
            var blockSizeBytes = blockSize * 4;

            // Count padding bytes
            var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;

            // Create padding word
            var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;

            // Create padding
            var paddingWords = [];
            for (var i = 0; i < nPaddingBytes; i += 4) {
                paddingWords.push(paddingWord);
            }
            var padding = WordArray.create(paddingWords, nPaddingBytes);

            // Add padding
            data.concat(padding);
        },

        /**
         * Unpads data that had been padded using the algorithm defined in PKCS #5/7.
         *
         * @param {WordArray} data The data to unpad.
         *
         * @static
         *
         * @example
         *
         *     CryptoJS.pad.Pkcs7.unpad(wordArray);
         */
        unpad: function (data) {
            // Get number of padding bytes from last byte
            var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;

            // Remove padding
            data.sigBytes -= nPaddingBytes;
        }
    };

    /**
     * Abstract base block cipher template.
     *
     * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
     */
    var BlockCipher = C_lib.BlockCipher = Cipher.extend({
        /**
         * Configuration options.
         *
         * @property {Mode} mode The block mode to use. Default: CBC
         * @property {Padding} padding The padding strategy to use. Default: Pkcs7
         */
        cfg: Cipher.cfg.extend({
            mode: CBC,
            padding: Pkcs7
        }),

        reset: function () {
            // Reset cipher
            Cipher.reset.call(this);

            // Shortcuts
            var cfg = this.cfg;
            var iv = cfg.iv;
            var mode = cfg.mode;

            // Reset block mode
            if (this._xformMode == this._ENC_XFORM_MODE) {
                var modeCreator = mode.createEncryptor;
            } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                var modeCreator = mode.createDecryptor;

                // Keep at least one block in the buffer for unpadding
                this._minBufferSize = 1;
            }
            this._mode = modeCreator.call(mode, this, iv && iv.words);
        },

        _doProcessBlock: function (words, offset) {
            this._mode.processBlock(words, offset);
        },

        _doFinalize: function () {
            // Shortcut
            var padding = this.cfg.padding;

            // Finalize
            if (this._xformMode == this._ENC_XFORM_MODE) {
                // Pad data
                padding.pad(this._data, this.blockSize);

                // Process final blocks
                var finalProcessedBlocks = this._process(!!'flush');
            } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
                // Process final blocks
                var finalProcessedBlocks = this._process(!!'flush');

                // Unpad data
                padding.unpad(finalProcessedBlocks);
            }

            return finalProcessedBlocks;
        },

        blockSize: 128/32
    });

    /**
     * A collection of cipher parameters.
     *
     * @property {WordArray} ciphertext The raw ciphertext.
     * @property {WordArray} key The key to this ciphertext.
     * @property {WordArray} iv The IV used in the ciphering operation.
     * @property {WordArray} salt The salt used with a key derivation function.
     * @property {Cipher} algorithm The cipher algorithm.
     * @property {Mode} mode The block mode used in the ciphering operation.
     * @property {Padding} padding The padding scheme used in the ciphering operation.
     * @property {number} blockSize The block size of the cipher.
     * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
     */
    var CipherParams = C_lib.CipherParams = Base.extend({
        /**
         * Initializes a newly created cipher params object.
         *
         * @param {Object} cipherParams An object with any of the possible cipher parameters.
         *
         * @example
         *
         *     var cipherParams = CryptoJS.lib.CipherParams.create({
         *         ciphertext: ciphertextWordArray,
         *         key: keyWordArray,
         *         iv: ivWordArray,
         *         salt: saltWordArray,
         *         algorithm: CryptoJS.algo.AES,
         *         mode: CryptoJS.mode.CBC,
         *         padding: CryptoJS.pad.PKCS7,
         *         blockSize: 4,
         *         formatter: CryptoJS.format.OpenSSL
         *     });
         */
        init: function (cipherParams) {
            this.mixIn(cipherParams);
        },

        /**
         * Converts this cipher params object to a string.
         *
         * @param {Format} formatter (Optional) The formatting strategy to use.
         *
         * @return {string} The stringified cipher params.
         *
         * @throws Error If neither the formatter nor the default formatter is set.
         *
         * @example
         *
         *     var string = cipherParams + '';
         *     var string = cipherParams.toString();
         *     var string = cipherParams.toString(CryptoJS.format.OpenSSL);
         */
        toString: function (formatter) {
            return (formatter || this.formatter).stringify(this);
        }
    });

    /**
     * Format namespace.
     */
    var C_format = C.format = {};

    /**
     * OpenSSL formatting strategy.
     */
    var OpenSSLFormatter = C_format.OpenSSL = {
        /**
         * Converts a cipher params object to an OpenSSL-compatible string.
         *
         * @param {CipherParams} cipherParams The cipher params object.
         *
         * @return {string} The OpenSSL-compatible string.
         *
         * @static
         *
         * @example
         *
         *     var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
         */
        stringify: function (cipherParams) {
            // Shortcuts
            var ciphertext = cipherParams.ciphertext;
            var salt = cipherParams.salt;

            // Format
            if (salt) {
                var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
            } else {
                var wordArray = ciphertext;
            }

            return wordArray.toString(Base64);
        },

        /**
         * Converts an OpenSSL-compatible string to a cipher params object.
         *
         * @param {string} openSSLStr The OpenSSL-compatible string.
         *
         * @return {CipherParams} The cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
         */
        parse: function (openSSLStr) {
            // Parse base64
            var ciphertext = Base64.parse(openSSLStr);

            // Shortcut
            var ciphertextWords = ciphertext.words;

            // Test for salt
            if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
                // Extract salt
                var salt = WordArray.create(ciphertextWords.slice(2, 4));

                // Remove salt from ciphertext
                ciphertextWords.splice(0, 4);
                ciphertext.sigBytes -= 16;
            }

            return CipherParams.create({ ciphertext: ciphertext, salt: salt });
        }
    };

    /**
     * A cipher wrapper that returns ciphertext as a serializable cipher params object.
     */
    var SerializableCipher = C_lib.SerializableCipher = Base.extend({
        /**
         * Configuration options.
         *
         * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
         */
        cfg: Base.extend({
            format: OpenSSLFormatter
        }),

        /**
         * Encrypts a message.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {WordArray|string} message The message to encrypt.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {CipherParams} A cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         */
        encrypt: function (cipher, message, key, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Encrypt
            var encryptor = cipher.createEncryptor(key, cfg);
            var ciphertext = encryptor.finalize(message);

            // Shortcut
            var cipherCfg = encryptor.cfg;

            // Create and return serializable cipher params
            return CipherParams.create({
                ciphertext: ciphertext,
                key: key,
                iv: cipherCfg.iv,
                algorithm: cipher,
                mode: cipherCfg.mode,
                padding: cipherCfg.padding,
                blockSize: cipher.blockSize,
                formatter: cfg.format
            });
        },

        /**
         * Decrypts serialized ciphertext.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
         * @param {WordArray} key The key.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {WordArray} The plaintext.
         *
         * @static
         *
         * @example
         *
         *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         *     var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
         */
        decrypt: function (cipher, ciphertext, key, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Convert string to CipherParams
            ciphertext = this._parse(ciphertext, cfg.format);

            // Decrypt
            var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);

            return plaintext;
        },

        /**
         * Converts serialized ciphertext to CipherParams,
         * else assumed CipherParams already and returns ciphertext unchanged.
         *
         * @param {CipherParams|string} ciphertext The ciphertext.
         * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
         *
         * @return {CipherParams} The unserialized ciphertext.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
         */
        _parse: function (ciphertext, format) {
            if (typeof ciphertext == 'string') {
                return format.parse(ciphertext, this);
            } else {
                return ciphertext;
            }
        }
    });

    /**
     * Key derivation function namespace.
     */
    var C_kdf = C.kdf = {};

    /**
     * OpenSSL key derivation function.
     */
    var OpenSSLKdf = C_kdf.OpenSSL = {
        /**
         * Derives a key and IV from a password.
         *
         * @param {string} password The password to derive from.
         * @param {number} keySize The size in words of the key to generate.
         * @param {number} ivSize The size in words of the IV to generate.
         * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
         *
         * @return {CipherParams} A cipher params object with the key, IV, and salt.
         *
         * @static
         *
         * @example
         *
         *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
         *     var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
         */
        execute: function (password, keySize, ivSize, salt) {
            // Generate random salt
            if (!salt) {
                salt = WordArray.random(64/8);
            }

            // Derive key and IV
            var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);

            // Separate key and IV
            var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
            key.sigBytes = keySize * 4;

            // Return params
            return CipherParams.create({ key: key, iv: iv, salt: salt });
        }
    };

    /**
     * A serializable cipher wrapper that derives the key from a password,
     * and returns ciphertext as a serializable cipher params object.
     */
    var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
        /**
         * Configuration options.
         *
         * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
         */
        cfg: SerializableCipher.cfg.extend({
            kdf: OpenSSLKdf
        }),

        /**
         * Encrypts a message using a password.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {WordArray|string} message The message to encrypt.
         * @param {string} password The password.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {CipherParams} A cipher params object.
         *
         * @static
         *
         * @example
         *
         *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
         *     var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
         */
        encrypt: function (cipher, message, password, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Derive key and other params
            var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);

            // Add IV to config
            cfg.iv = derivedParams.iv;

            // Encrypt
            var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);

            // Mix in derived params
            ciphertext.mixIn(derivedParams);

            return ciphertext;
        },

        /**
         * Decrypts serialized ciphertext using a password.
         *
         * @param {Cipher} cipher The cipher algorithm to use.
         * @param {CipherParams|string} ciphertext The ciphertext to decrypt.
         * @param {string} password The password.
         * @param {Object} cfg (Optional) The configuration options to use for this operation.
         *
         * @return {WordArray} The plaintext.
         *
         * @static
         *
         * @example
         *
         *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
         *     var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
         */
        decrypt: function (cipher, ciphertext, password, cfg) {
            // Apply config defaults
            cfg = this.cfg.extend(cfg);

            // Convert string to CipherParams
            ciphertext = this._parse(ciphertext, cfg.format);

            // Derive key and other params
            var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);

            // Add IV to config
            cfg.iv = derivedParams.iv;

            // Decrypt
            var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);

            return plaintext;
        }
    });
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var BlockCipher = C_lib.BlockCipher;
    var C_algo = C.algo;

    // Lookup tables
    var SBOX = [];
    var INV_SBOX = [];
    var SUB_MIX_0 = [];
    var SUB_MIX_1 = [];
    var SUB_MIX_2 = [];
    var SUB_MIX_3 = [];
    var INV_SUB_MIX_0 = [];
    var INV_SUB_MIX_1 = [];
    var INV_SUB_MIX_2 = [];
    var INV_SUB_MIX_3 = [];

    // Compute lookup tables
    (function () {
        // Compute double table
        var d = [];
        for (var i = 0; i < 256; i++) {
            if (i < 128) {
                d[i] = i << 1;
            } else {
                d[i] = (i << 1) ^ 0x11b;
            }
        }

        // Walk GF(2^8)
        var x = 0;
        var xi = 0;
        for (var i = 0; i < 256; i++) {
            // Compute sbox
            var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
            sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
            SBOX[x] = sx;
            INV_SBOX[sx] = x;

            // Compute multiplication
            var x2 = d[x];
            var x4 = d[x2];
            var x8 = d[x4];

            // Compute sub bytes, mix columns tables
            var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
            SUB_MIX_0[x] = (t << 24) | (t >>> 8);
            SUB_MIX_1[x] = (t << 16) | (t >>> 16);
            SUB_MIX_2[x] = (t << 8)  | (t >>> 24);
            SUB_MIX_3[x] = t;

            // Compute inv sub bytes, inv mix columns tables
            var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
            INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
            INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
            INV_SUB_MIX_2[sx] = (t << 8)  | (t >>> 24);
            INV_SUB_MIX_3[sx] = t;

            // Compute next counter
            if (!x) {
                x = xi = 1;
            } else {
                x = x2 ^ d[d[d[x8 ^ x2]]];
                xi ^= d[d[xi]];
            }
        }
    }());

    // Precomputed Rcon lookup
    var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];

    /**
     * AES block cipher algorithm.
     */
    var AES = C_algo.AES = BlockCipher.extend({
        _doReset: function () {
            // Shortcuts
            var key = this._key;
            var keyWords = key.words;
            var keySize = key.sigBytes / 4;

            // Compute number of rounds
            var nRounds = this._nRounds = keySize + 6

            // Compute number of key schedule rows
            var ksRows = (nRounds + 1) * 4;

            // Compute key schedule
            var keySchedule = this._keySchedule = [];
            for (var ksRow = 0; ksRow < ksRows; ksRow++) {
                if (ksRow < keySize) {
                    keySchedule[ksRow] = keyWords[ksRow];
                } else {
                    var t = keySchedule[ksRow - 1];

                    if (!(ksRow % keySize)) {
                        // Rot word
                        t = (t << 8) | (t >>> 24);

                        // Sub word
                        t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];

                        // Mix Rcon
                        t ^= RCON[(ksRow / keySize) | 0] << 24;
                    } else if (keySize > 6 && ksRow % keySize == 4) {
                        // Sub word
                        t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
                    }

                    keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
                }
            }

            // Compute inv key schedule
            var invKeySchedule = this._invKeySchedule = [];
            for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
                var ksRow = ksRows - invKsRow;

                if (invKsRow % 4) {
                    var t = keySchedule[ksRow];
                } else {
                    var t = keySchedule[ksRow - 4];
                }

                if (invKsRow < 4 || ksRow <= 4) {
                    invKeySchedule[invKsRow] = t;
                } else {
                    invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
                                               INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
                }
            }
        },

        encryptBlock: function (M, offset) {
            this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
        },

        decryptBlock: function (M, offset) {
            // Swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;

            this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);

            // Inv swap 2nd and 4th rows
            var t = M[offset + 1];
            M[offset + 1] = M[offset + 3];
            M[offset + 3] = t;
        },

        _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
            // Shortcut
            var nRounds = this._nRounds;

            // Get input, add round key
            var s0 = M[offset]     ^ keySchedule[0];
            var s1 = M[offset + 1] ^ keySchedule[1];
            var s2 = M[offset + 2] ^ keySchedule[2];
            var s3 = M[offset + 3] ^ keySchedule[3];

            // Key schedule row counter
            var ksRow = 4;

            // Rounds
            for (var round = 1; round < nRounds; round++) {
                // Shift rows, sub bytes, mix columns, add round key
                var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
                var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
                var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
                var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];

                // Update state
                s0 = t0;
                s1 = t1;
                s2 = t2;
                s3 = t3;
            }

            // Shift rows, sub bytes, add round key
            var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
            var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
            var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
            var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];

            // Set output
            M[offset]     = t0;
            M[offset + 1] = t1;
            M[offset + 2] = t2;
            M[offset + 3] = t3;
        },

        keySize: 256/32
    });

    /**
     * Shortcut functions to the cipher's object interface.
     *
     * @example
     *
     *     var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
     *     var plaintext  = CryptoJS.AES.decrypt(ciphertext, key, cfg);
     */
    C.AES = BlockCipher._createHelper(AES);
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var Hasher = C_lib.Hasher;
    var C_algo = C.algo;

    // Reusable object
    var W = [];

    /**
     * SHA-1 hash algorithm.
     */
    var SHA1 = C_algo.SHA1 = Hasher.extend({
        _doReset: function () {
            this._hash = new WordArray.init([
                0x67452301, 0xefcdab89,
                0x98badcfe, 0x10325476,
                0xc3d2e1f0
            ]);
        },

        _doProcessBlock: function (M, offset) {
            // Shortcut
            var H = this._hash.words;

            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];

            // Computation
            for (var i = 0; i < 80; i++) {
                if (i < 16) {
                    W[i] = M[offset + i] | 0;
                } else {
                    var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
                    W[i] = (n << 1) | (n >>> 31);
                }

                var t = ((a << 5) | (a >>> 27)) + e + W[i];
                if (i < 20) {
                    t += ((b & c) | (~b & d)) + 0x5a827999;
                } else if (i < 40) {
                    t += (b ^ c ^ d) + 0x6ed9eba1;
                } else if (i < 60) {
                    t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
                } else /* if (i < 80) */ {
                    t += (b ^ c ^ d) - 0x359d3e2a;
                }

                e = d;
                d = c;
                c = (b << 30) | (b >>> 2);
                b = a;
                a = t;
            }

            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
        },

        _doFinalize: function () {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;

            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;

            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;

            // Hash final blocks
            this._process();

            // Return final computed hash
            return this._hash;
        },

        clone: function () {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();

            return clone;
        }
    });

    /**
     * Shortcut function to the hasher's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     *
     * @return {WordArray} The hash.
     *
     * @static
     *
     * @example
     *
     *     var hash = CryptoJS.SHA1('message');
     *     var hash = CryptoJS.SHA1(wordArray);
     */
    C.SHA1 = Hasher._createHelper(SHA1);

    /**
     * Shortcut function to the HMAC's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     * @param {WordArray|string} key The secret key.
     *
     * @return {WordArray} The HMAC.
     *
     * @static
     *
     * @example
     *
     *     var hmac = CryptoJS.HmacSHA1(message, key);
     */
    C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function (Math) {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var WordArray = C_lib.WordArray;
    var Hasher = C_lib.Hasher;
    var C_algo = C.algo;

    // Initialization and round constants tables
    var H = [];
    var K = [];

    // Compute constants
    (function () {
        function isPrime(n) {
            var sqrtN = Math.sqrt(n);
            for (var factor = 2; factor <= sqrtN; factor++) {
                if (!(n % factor)) {
                    return false;
                }
            }

            return true;
        }

        function getFractionalBits(n) {
            return ((n - (n | 0)) * 0x100000000) | 0;
        }

        var n = 2;
        var nPrime = 0;
        while (nPrime < 64) {
            if (isPrime(n)) {
                if (nPrime < 8) {
                    H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
                }
                K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));

                nPrime++;
            }

            n++;
        }
    }());

    // Reusable object
    var W = [];

    /**
     * SHA-256 hash algorithm.
     */
    var SHA256 = C_algo.SHA256 = Hasher.extend({
        _doReset: function () {
            this._hash = new WordArray.init(H.slice(0));
        },

        _doProcessBlock: function (M, offset) {
            // Shortcut
            var H = this._hash.words;

            // Working variables
            var a = H[0];
            var b = H[1];
            var c = H[2];
            var d = H[3];
            var e = H[4];
            var f = H[5];
            var g = H[6];
            var h = H[7];

            // Computation
            for (var i = 0; i < 64; i++) {
                if (i < 16) {
                    W[i] = M[offset + i] | 0;
                } else {
                    var gamma0x = W[i - 15];
                    var gamma0  = ((gamma0x << 25) | (gamma0x >>> 7))  ^
                                  ((gamma0x << 14) | (gamma0x >>> 18)) ^
                                   (gamma0x >>> 3);

                    var gamma1x = W[i - 2];
                    var gamma1  = ((gamma1x << 15) | (gamma1x >>> 17)) ^
                                  ((gamma1x << 13) | (gamma1x >>> 19)) ^
                                   (gamma1x >>> 10);

                    W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
                }

                var ch  = (e & f) ^ (~e & g);
                var maj = (a & b) ^ (a & c) ^ (b & c);

                var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
                var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7)  | (e >>> 25));

                var t1 = h + sigma1 + ch + K[i] + W[i];
                var t2 = sigma0 + maj;

                h = g;
                g = f;
                f = e;
                e = (d + t1) | 0;
                d = c;
                c = b;
                b = a;
                a = (t1 + t2) | 0;
            }

            // Intermediate hash value
            H[0] = (H[0] + a) | 0;
            H[1] = (H[1] + b) | 0;
            H[2] = (H[2] + c) | 0;
            H[3] = (H[3] + d) | 0;
            H[4] = (H[4] + e) | 0;
            H[5] = (H[5] + f) | 0;
            H[6] = (H[6] + g) | 0;
            H[7] = (H[7] + h) | 0;
        },

        _doFinalize: function () {
            // Shortcuts
            var data = this._data;
            var dataWords = data.words;

            var nBitsTotal = this._nDataBytes * 8;
            var nBitsLeft = data.sigBytes * 8;

            // Add padding
            dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
            dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
            data.sigBytes = dataWords.length * 4;

            // Hash final blocks
            this._process();

            // Return final computed hash
            return this._hash;
        },

        clone: function () {
            var clone = Hasher.clone.call(this);
            clone._hash = this._hash.clone();

            return clone;
        }
    });

    /**
     * Shortcut function to the hasher's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     *
     * @return {WordArray} The hash.
     *
     * @static
     *
     * @example
     *
     *     var hash = CryptoJS.SHA256('message');
     *     var hash = CryptoJS.SHA256(wordArray);
     */
    C.SHA256 = Hasher._createHelper(SHA256);

    /**
     * Shortcut function to the HMAC's object interface.
     *
     * @param {WordArray|string} message The message to hash.
     * @param {WordArray|string} key The secret key.
     *
     * @return {WordArray} The HMAC.
     *
     * @static
     *
     * @example
     *
     *     var hmac = CryptoJS.HmacSHA256(message, key);
     */
    C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
}(Math));

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
(function () {
    // Shortcuts
    var C = CryptoJS;
    var C_lib = C.lib;
    var Base = C_lib.Base;
    var C_enc = C.enc;
    var Utf8 = C_enc.Utf8;
    var C_algo = C.algo;

    /**
     * HMAC algorithm.
     */
    var HMAC = C_algo.HMAC = Base.extend({
        /**
         * Initializes a newly created HMAC.
         *
         * @param {Hasher} hasher The hash algorithm to use.
         * @param {WordArray|string} key The secret key.
         *
         * @example
         *
         *     var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
         */
        init: function (hasher, key) {
            // Init hasher
            hasher = this._hasher = new hasher.init();

            // Convert string to WordArray, else assume WordArray already
            if (typeof key == 'string') {
                key = Utf8.parse(key);
            }

            // Shortcuts
            var hasherBlockSize = hasher.blockSize;
            var hasherBlockSizeBytes = hasherBlockSize * 4;

            // Allow arbitrary length keys
            if (key.sigBytes > hasherBlockSizeBytes) {
                key = hasher.finalize(key);
            }

            // Clamp excess bits
            key.clamp();

            // Clone key for inner and outer pads
            var oKey = this._oKey = key.clone();
            var iKey = this._iKey = key.clone();

            // Shortcuts
            var oKeyWords = oKey.words;
            var iKeyWords = iKey.words;

            // XOR keys with pad constants
            for (var i = 0; i < hasherBlockSize; i++) {
                oKeyWords[i] ^= 0x5c5c5c5c;
                iKeyWords[i] ^= 0x36363636;
            }
            oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;

            // Set initial values
            this.reset();
        },

        /**
         * Resets this HMAC to its initial state.
         *
         * @example
         *
         *     hmacHasher.reset();
         */
        reset: function () {
            // Shortcut
            var hasher = this._hasher;

            // Reset
            hasher.reset();
            hasher.update(this._iKey);
        },

        /**
         * Updates this HMAC with a message.
         *
         * @param {WordArray|string} messageUpdate The message to append.
         *
         * @return {HMAC} This HMAC instance.
         *
         * @example
         *
         *     hmacHasher.update('message');
         *     hmacHasher.update(wordArray);
         */
        update: function (messageUpdate) {
            this._hasher.update(messageUpdate);

            // Chainable
            return this;
        },

        /**
         * Finalizes the HMAC computation.
         * Note that the finalize operation is effectively a destructive, read-once operation.
         *
         * @param {WordArray|string} messageUpdate (Optional) A final message update.
         *
         * @return {WordArray} The HMAC.
         *
         * @example
         *
         *     var hmac = hmacHasher.finalize();
         *     var hmac = hmacHasher.finalize('message');
         *     var hmac = hmacHasher.finalize(wordArray);
         */
        finalize: function (messageUpdate) {
            // Shortcut
            var hasher = this._hasher;

            // Compute HMAC
            var innerHash = hasher.finalize(messageUpdate);
            hasher.reset();
            var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));

            return hmac;
        }
    });
}());

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * A noop padding strategy.
 */
CryptoJS.pad.NoPadding = {
    pad: function () {
    },

    unpad: function () {
    }
};

/*
CryptoJS v3.1.2
code.google.com/p/crypto-js
(c) 2009-2013 by Jeff Mott. All rights reserved.
code.google.com/p/crypto-js/wiki/License
*/
/**
 * Counter block mode.
 */
CryptoJS.mode.CTR = (function () {
    var CTR = CryptoJS.lib.BlockCipherMode.extend();

    var Encryptor = CTR.Encryptor = CTR.extend({
        processBlock: function (words, offset) {
            // Shortcuts
            var cipher = this._cipher
            var blockSize = cipher.blockSize;
            var iv = this._iv;
            var counter = this._counter;

            // Generate keystream
            if (iv) {
                counter = this._counter = iv.slice(0);

                // Remove IV for subsequent blocks
                this._iv = undefined;
            }
            var keystream = counter.slice(0);
            cipher.encryptBlock(keystream, 0);

            // Increment counter
            counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0

            // Encrypt
            for (var i = 0; i < blockSize; i++) {
                words[offset + i] ^= keystream[i];
            }
        }
    });

    CTR.Decryptor = Encryptor;

    return CTR;
}());


  return CryptoJS

}))